Exponential Derivatives

Goal:

- Understands that $\frac{d}{d x} e^{x}=e^{x}$
- Can use implicit differentiation to show $\frac{d}{d x} \ln x=\frac{1}{x}$

Terminology:

- None

Reminder:

- Quiz on Implicit and Logarithmic Differentiation next Wednesday
- Test on Tuesday November $12^{\text {th }}$

Review: Show

$$
\frac{d}{d x} \arctan u=\frac{1}{1+u^{2}} \cdot \frac{d u}{d x}
$$

Given the graph of f, draw the graph f^{\prime}.

There is a very speacial number $e=2.71828$... that is involved here. Our goal is to show that

$$
\frac{d}{d x} e^{x}=e^{x}
$$

And one way this is done is to use the definition of the derivative and the definition that

$$
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

(watch the video on the website)

But I want to build this function organically and give a preview of Taylor Series to those who are going to write the BC exam.

Example: Find $\frac{d f}{d x}$ given that $f(u)=e^{u^{2}} \cdot \arccos u$

Example: And of course we want to find the derivative of the exponential inverse, logarithm. So, what is the derivative of

$$
y=\ln x
$$

Example: Find $\frac{d f}{d x}$ given that $f(u)=\ln (\operatorname{arcsec} u)$

Practice Problems: 3.8: \# 1-10 and 21-30 (at least every other), 41, 42
\# 50, 52
Look Ahead: How can logarithms help differentiate $y=\frac{1}{x(x+1)(x+2)}$

In Class Evidence

Find $d y / d x$ for the following.
5.

$$
y=e^{\frac{2 x}{3}}
$$

8.

$$
y=x^{2} e^{x}-x e^{x}
$$

30.

$y=x \ln x-x$
42. Find an equation for a line that is tangent to the graph of $y=x e^{x}$ and goes through the origin.
52. Prove that the curve $y=-\frac{1}{2} x^{2}+k$ is perpendicular to $y=\ln x+c$ at their points of intersection. (see textbook for illustration)

