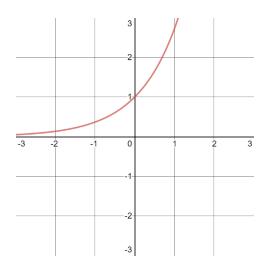
Exponential Derivatives

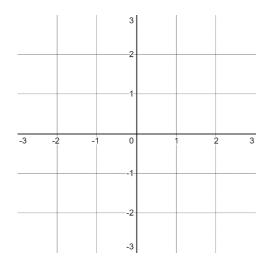
Goal:

- Understands that $\frac{d}{dx}e^x = e^x$
- Can use implicit differentiation to show $\frac{d}{dx} \ln x = \frac{1}{x}$

Terminology:

None


Reminder:


- Quiz on Implicit and Logarithmic Differentiation next Wednesday
- Test on Tuesday November 12th

Review: Show

$$\frac{d}{dx}\arctan u = \frac{1}{1+u^2} \cdot \frac{du}{dx}$$

Given the graph of f, draw the graph f'.

There is a very speacial number e = 2.71828 ... that is involved here. Our goal is to show that

$$\frac{d}{dx}e^x = e^x$$

And one way this is done is to use the definition of the derivative and the definition that

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

(watch the video on the website)

But I want to build this function organically and give a preview of **Taylor Series** to those who are going to write the BC exam.

Example: Find $\frac{df}{dx}$ given that $f(u) = e^{u^2} \cdot \arccos u$

Example: And of course we want to find the derivative of the exponential inverse, logarithm. So, what is the derivative of

 $y = \ln x$

Example: Find $\frac{df}{dx}$ given that $f(u) = \ln(\operatorname{arcsec} u)$

Practice Problems: 3.8: # 1-10 and 21-30 (at least every other), 41, 42			
the second se			
₩ 50, 52			
Look Ahead : How can logarithms help differentiate $y = \frac{1}{x(x+1)(x+2)}$			

In Class Evidence

Find dy/dx for the following.

51	24	_	2 ~ ~ ~ ~
5.	$\frac{2x}{x}$	8.	$y = x^2 e^x - x e^x$
-	$y = e^{\overline{3}}$	-	<i>y n e n e</i>

29. $y = \ln(\ln x)$ 30. $y = x \ln x - x$

42. Find an equation for a line that is tangent to the graph of $y = xe^x$ and goes through the origin.

52. Prove that the curve $y = -\frac{1}{2}x^2 + k$ is perpendicular to $y = \ln x + c$ at their points of intersection. (see textbook for illustration)