The Derivative

Goal:

- Can use proper derivative notation to describe the slope of a curve
- Can determine if a function is differentiable based on its graph
- Understands that derivative is just another word for slope.
- Differentiable

Review: Write the slope of the tangent line to the curve $f(x)$ at the point $x=c$.

Now that we are comfortable using this limit, we are going to define this slope at the general point x the derivative.
Notation: There are two ways we are going to talk about the derivative

1. Leibnitz's DX Notation
2. Newton's Prime Noation

Graph the derivatives of the following functions

1. $f(x)=|x|$

2. $g(x)=\sqrt{|x|}$

3. $h(x)=\sqrt[5]{x}$

4.

$$
k(x)=\left\{\begin{array}{rr}
x^{2}, & x \neq 1 \\
2, & x=1
\end{array}\right.
$$

Practice Problems: 2.1: \# 2-4, 6, 9, 10, 12, 13

In Class Evidence

6. If $f(x)=\frac{1}{x^{\prime}}$, find $f^{\prime}(3)$ and use it to find the equation of the tangent to the curve $y=\frac{1}{x}$ at the point $\left(3, \frac{1}{3}\right)$.
7. Find the derivative $\frac{d y}{d x}$
c. $y=x+\frac{1}{x}$
b. $y=3 x^{3}+2 x$
8. Given the graphs of f, sketch the graph of f^{\prime}.
a.

b.

9. Show that $f(x)=x^{\frac{2}{3}}$ is NOT differentiable at $x=0$ and sketch the curve.

