Sum and Difference Rule

Goal:

- Can use sum and difference rule to take the derivative of polynomials
- Understands how to derive sum and difference rule

Terminology:

- Sum and Difference rule

Reminders

- Quiz on Thursday on 2.1-2.3

Review: 1. In order to find the derivative of x^{n} using the limit definition of the derivative how did we expand $(x+h)^{n}$?
2. Given $f(x)=\frac{8}{\sqrt{x^{3}}}$ determine $f^{\prime}(x)$ and its domain.
3. What does $\frac{d y}{d x}$ measure?

We want to be able to take the derivative of an entire polynomial, not just a monomial. On the boards use the definition of the derivative.

$$
\frac{d}{d x}(f(x)+g(x))
$$

Example: Given $y=-\frac{1}{3} x^{3}-3 x^{2}+7 x+2$, find point(s) where the slope of the curve is 0 .

In Class Evidence

8. Show that the curve $y=10 x^{3}+4 x+2$ has no tangent lines with slope 3 . (What is the minimal slope of the curve?)
9. Fund the equations of the tangent lines to the parabola $y=x^{2}+x$ that pass through the point $(2,-3)$. Sketch the curve and its tangents.

10. Let

$$
f(x)=\left\{\begin{array}{lr}
2 x+3 & x<-1 \\
x^{2} & -1 \leq x \leq 1 \\
3-2 x & x>1
\end{array}\right.
$$

a. Where is f differentiable?
b. Find an expression for f^{\prime} and sketch it and f

Problem Plus: Suppose that the tangent line at a point P on the curve $y=x^{3}$ intersects the curve again at the point Q. Show that the slope of the tangent at Q is 4 times greater than the slope at P.

