Product Rule

Goal:

- Can use product rule to take the derivative of product of polynomial and radical functions
- Understands how to visualize product rule as changing area

Terminology:

- Product Rule

We know how to take the derivative of a power and a sum already:

$$
\begin{gathered}
\frac{d}{d x} x^{n}=n x^{n-1} \\
\frac{d}{d x}(f+g)=\frac{d f}{d x}+\frac{d g}{d x}
\end{gathered}
$$

But now we want to take the derivative of a product:

$$
\frac{d}{d x}(f \cdot g)
$$

Show that the derivative does not distribute through multiplication like it does with addition. That is show

$$
\frac{d}{d x}(f \cdot g) \neq \frac{d f}{d x} \cdot \frac{d g}{d x}
$$

So, the question remains, what should the derivative be?

Example: Consider the following

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
3	4	-2	6	3

Determine the equation of the tangent line to the curve $y=f(x) \cdot g(x)+x^{2}$ at the point $(3,-1)$

Example: Determine the domain of $\frac{d y}{d x}$ and evaluate $y^{\prime}(1)$ for the function

$$
y=\left(x^{3}+5 x^{2}-4 x\right)\left(\sqrt{x}-\frac{1}{x}\right)
$$

Practice Problems: 2.3: \# 1-3 (do what you need), 4, 6, 7, 8, 10

