Using Desmos and Geogebra with Compositions and Translations

Part 1: Compositions:

Consider the functions:

$$
f(x)=2 x+4, x \in[-3,1] \quad g(x)=\sqrt{x+1}
$$

Use mapping notation to identify the domain and range of each function and then determine the domain and range of $g \circ f$. Check using technology by defining both functions and graphing $g(f(x))$

Do the same to determine the domain and range of $f \circ g$

Consider the functions:

$$
p(x)=\left\{\begin{array}{l}
1-2 x,-2 \leq x<0 \\
x+1, \quad 0 \leq x<2
\end{array} \quad q(x)=\frac{1}{x}\right.
$$

Use mapping notation to identify the domain and range of each function and then determine the domain and range of $p \circ q$. Check using technology by defining both functions and graphing $p(q(x))$

Do the same to determine the domain and range of $q \circ p$

Part 2: Characteristics and Translations

We want to consider how vertical and horizontal translations effect the following characteristics of functions:

- Domain
- Range (included in this is max and min values)
- Zeros
- y-intercept
- Vertical asymptotes
- Horizontal asymptotes

Domain and Range

Consider the function $f(x)=x^{2},-1 \leq x \leq 2$. Graph this function and graph a box around it to highlight the domain and range. To do this type the following into Desmos

$$
\begin{aligned}
& x=[-1,2]\{0 \leq y \leq 4\} \\
& y=[0,4]\{-1 \leq x \leq 2\}
\end{aligned}
$$

The square brackets tell Desmos to make a list and then we are just graphing all those lines.
Add a function $g(x)=f(x-c)+d$ to shift the function left/right and up/down

Add new vertical and horizontal lines as functions of c and d and explain how shifting the function changes the domain and range in a predictable way.

Zeros and \boldsymbol{y}-intercept:

Consider the function $p(x)=x^{3}+3 x^{2}-x-3$. Graph the function and plot the zeros and y-intercept on the graph by plotting the coordinates

$$
\begin{gathered}
(-3,0),(-1,0),(1,0) \\
(0,-3)
\end{gathered}
$$

Add a function q that translates the function left/right and up/down.

Add new points for the zeros and intercept as functions of the shifts.

Explain how shifting the function changes the zeros and changes the y-intercept in a predictable way.

Asymptotes:

Consider the function $R(x)=\frac{x^{2}+1}{x^{2}+x-3}$
Graph the function and graph the asymptotes at $x=-3, x=2$, and $y=1$

Add a function T that translates the function left/right and up/down.
Add new lines for the asymptotes as functions of the shifts. Explain how shifting the function changes the asymptotes in a predictable way.

