Using Desmos and Geogebra with Compositions and Translations

Part 1: Compositions:

Consider the functions:

$$f(x) = 2x + 4, x \in [-3, 1]$$
 $g(x) = \sqrt{x+1}$

Use mapping notation to identify the domain and range of each function and then determine the domain and range of $g \circ f$. Check using technology by defining both functions and graphing g(f(x))

Do the same to determine the domain and range of $f \circ g$

g:
$$[-3,1]$$
 $[-2,6]$

Domain

Intersection

If $x \in Domain \Rightarrow g(x) \in [-3,1]$

If $x \in [-3,1]$

Ronge

 $\Rightarrow O \subseteq A[x+1] \subseteq I$
 $O \subseteq X \subseteq X \subseteq X$
 $O \subseteq X \subseteq X$
 $O \subseteq X \subseteq X \subseteq X$
 $O \subseteq X$

Consider the functions:

$$p(x) = \begin{cases} 1 - 2x, -2 \le x < 0 \\ x + 1, & 0 \le x < 2 \end{cases} \qquad q(x) = \frac{1}{x}$$

Use mapping notation to identify the domain and range of each function and then determine the domain and range of $p\circ q$. Check using technology by defining both functions and graphing pig(q(x)ig)

Do the same to determine the domain and range of $q \circ p$

If
$$x \in Domain \Rightarrow p(x) \in [1,5]$$
 If $x \in [1,5] \Rightarrow q(x) \in Rays$

$$|x| = |x| = |x|$$

$$|x| = |x|$$

Part 2: Characteristics and Translations

We want to consider how vertical and horizontal translations effect the following characteristics of functions:

- Domain
- Range (included in this is max and min values)
- Zeros
- *y*-intercept
- Vertical asymptotes
- Horizontal asymptotes

Domain and Range

Consider the function $f(x) = x^2$, $-1 \le x \le 2$. Graph this function and graph a box around it to highlight the domain and range. To do this type the following into Desmos

$$x = [-1,2]\{0 \le y \le 4\}$$
$$y = [0,4]\{-1 \le x \le 2\}$$

The square brackets tell Desmos to make a list and then we are just graphing all those lines.

Add a function g(x) = f(x - c) + d to shift the function left/right and up/down

Add new vertical and horizontal lines as functions of c and d and explain how shifting the function changes the domain and range in a predictable way.

Shifting left/right changes the domain

=) new domain is [-1+c, 2+c]

Shifting up/down changes the range

=) New range is [0+d, 4+d]

Zeros and *y*-intercept:

Consider the function $p(x) = x^3 + 3x^2 - x - 3$. Graph the function and plot the zeros and y-intercept on the graph by plotting the coordinates

$$(-3,0), (-1,0), (1,0)$$

 $(0,-3)$

Add a function q that translates the function left/right and up/down.

Add new points for the zeros and intercept as functions of the shifts.

Explain how shifting the function changes the zeros and changes the y-intercept in a predictable way.

Since the points more
$$(x,y) \mapsto (x+c,y+d)$$
for a zero to remain a zero we need there
to be NO vertical shift

 $(-3,0) \mapsto (-3+c,0)$ etc

The same is true for y-intercepts as there can
be NO horizontal shift

 $(0,-3) \mapsto (0,-3+d)$

Asymptotes:

Consider the function and $R(x) = \frac{x^2+1}{x^2+x-4}$

Graph the function and graph the asymptotes at x = -3, x = 2, and y = 1

Add a function T that translates the function left/right and up/down.

Add new lines for the asymptotes as functions of the shifts. Explain how shifting the function changes the asymptotes in a predictable way.

The asymptotes charge as the domain + range charge
$$Shifty$$
 left/right moves the vertical asymptotes L naw at $x=-3+c$ and $x=2+c$ $Shifty$ upldown moves the horizontal asymptotes L new at $y=1+d$