Steady States and Motion

Goal:

- Can identify the steady states of a differential equation.
- Can use the steady states to predict behaviour of a particle in motion.

Terminology:

- Steady state
- Stable, unstable

Discussion question: Three particles are moving along the y-axis. There vertical position are a, b, and c and their respective velocities are:

$$
\frac{d a}{d t}=1-t \quad \frac{d b}{d t}=1-b \quad \frac{d c}{d t}=(1-t) \cdot(1-c)
$$

Every particle is at $y=2$ when $t=0$, that is $a(0)=b(0)=c(0)=2$. How does motion differ for each particle?

A differential of the form

$$
\frac{d y}{d t}=f(t)
$$

Likely has NO steady states even though $\frac{d y}{d t}$ may be 0 at some time t. A steady state is when $\frac{d y}{d t} \rightarrow 0$ as $t \rightarrow \infty$

Example: Consider the functions

$$
\frac{d y}{d t}=t \quad \frac{d y}{d t}=\frac{1}{t} \quad \frac{d y}{d t}=\frac{1}{t^{2}}
$$

Example: Determine the steady states and their stability of

$$
\frac{d y}{d t}=y^{2}(y-1)(y+4)
$$

Practice: Determine the steady states and stability of

$$
\frac{d P}{d t}=\left(P^{2}-1\right)(2-P)
$$

Practice: Determine the steady states and stability of

$$
\frac{d a}{d b}=(1-b)(2 a+4)
$$

Practice Problems: Steady state practice problems

