Steady States and Motion

Goal:

- Can identify the steady states of a differential equation.
- Can use the steady states to predict behaviour of a particle in motion.

Terminology:

- Steady state
- Stable, unstable

Discussion question: Three particles are moving along the y-axis. There vertical position are a, b, and c and their respective velocities are:

$$
\frac{d a}{d t}=1-t \quad \frac{d b}{d t}=1-b \quad \frac{d c}{d t}=(1-t) \cdot(1-c)
$$

Every particle is at $y=2$ when $t=0$, that is $a(0)=b(0)=c(0)=2$. How does motion differ for each particle?

Particle a will fall down the y-axis moving to $-\infty$. Although it does stop moving at $t=1$, it will start to fall down immediately after. As $t \rightarrow \infty$ we have $\frac{d a}{d t} \rightarrow-\infty$

Particle b will settle down at $b=1$ (we call this a stable steady state). As $t \rightarrow \infty$ we have $\frac{d b}{d t} \rightarrow 0$ as it is drawn toward $b=1$

Particle c will shoot up the y-axis moving to ∞ (as it moves away from $c=1$ which is an unstable steady state as if $c=1$ then $\frac{d c}{d t}=0$ no matter what t is). As $t \rightarrow \infty$ we have that $\frac{d c}{d t} \rightarrow \pm \infty$ depending on the sign of $1-c$

A differential of the form

$$
\frac{d y}{d t}=f(t)
$$

Likely has NO steady states even though $\frac{d y}{d t}$ may be 0 at some time t. A steady state is when $\frac{d y}{d t} \rightarrow 0$ as $t \rightarrow \infty$
So $f(t)$ would need a horizontal asymptote but it is still going to depend on the initial condition. ALSO, it is not even enough we have a horizontal asymptote

Example: Consider the functions

$$
\frac{d y}{d t}=t \quad \frac{d y}{d t}=\frac{1}{t} \quad \frac{d y}{d t}=\frac{1}{t^{2}}
$$

We can solve for y in all of these cases

$$
\begin{array}{lll}
\frac{d}{d t}[? ? ?]=t & \frac{d}{d t}[? ? ?]=\frac{1}{t} & \frac{d}{d t}[? ? ?]=\frac{1}{t^{2}} \\
\Rightarrow y=\frac{t^{2}}{2}+C & \Rightarrow y=\ln |t|+C & \Rightarrow y=-\frac{1}{t}+C
\end{array}
$$

Here $\frac{d y}{d t}$ has no horizontal asymptote and the solution is a parabola so it $y \rightarrow \infty$ as $t \rightarrow \infty$

Here $\frac{d y}{d t}$ has a horizontal asymptote of 0 which suggest as steady state, but the solution is a log so still we have $y \rightarrow \infty$ as $t \rightarrow$ ∞

In the last case $\frac{d y}{d t}$ has a horizontal asymptote of 0 and the solution is $\frac{1}{t}$ so there is a steady state of $y \rightarrow C$ as $t \rightarrow \infty$

In general, we will not be looking much at differentials where $\frac{d y}{d t}=f(t)$ for the remainder of the unit.
Example: Determine the steady states and their stability of

$$
\frac{d y}{d t}=y^{2}(y-1)(y+4)
$$

We look for where $\frac{d y}{d t}=0$ this is the zeros of the polynomial given and at

$$
y=0,1,-4
$$

To see the behaviour around these steady states we can sketch the differential equation as a function of y. Using the sign of y^{\prime} we can see where the particle would move. If $y^{\prime}>0$ then the particle moves to a more positive position and if $y^{\prime}<0$ the particle moves to a more negative position.

We have that -4 is stable, 0 is semi-stable and 1 is unstable

Practice: Determine the steady states and stability of

$$
\frac{d P}{d t}=\left(P^{2}-1\right)(2-P)
$$

We look for where $\frac{d P}{d t}=0$ which is when

$$
P=-1,1,2
$$

We can sketch $\frac{d P}{d t}$ as a function of P and then

We have that 1 is stable, and -1 and 2 are both unstable

Practice: Determine the steady states and stability of

$$
\frac{d a}{d b}=(1-b)(2 a+4)
$$

When we are looking for steady states in

$$
\frac{d y}{d t}=f(t, y)
$$

We want $t \rightarrow \infty$ and to find the values of y that make $\frac{d y}{d t}=0$. In this case we want to find the values of a that make $\frac{d a}{d b}=0$ and let $b \rightarrow \infty$. So, we essentially have

$$
\frac{d a}{d b}=-(2 a+4)
$$

Which has a steady state at $a=-2$ and looking at the shape of $\frac{d a}{d b}$ as a function of a we get

Showing that $a=-2$ is stable.

