Steady States and Motion

Goal:

- Can identify the steady states of a differential equation.
- Can use the steady states to predict behaviour of a particle in motion.

Terminology:

- Steady state
- Stable, unstable

Discussion question: Three particles are moving along the *y*-axis. There vertical position are *a*, *b*, and *c* and their respective velocities are:

$$\frac{da}{dt} = 1 - t \qquad \qquad \frac{db}{dt} = 1 - b \qquad \qquad \frac{dc}{dt} = (1 - t) \cdot (1 - c)$$

Every particle is at y = 2 when t = 0, that is a(0) = b(0) = c(0) = 2. How does motion differ for each particle?

Particle *a* will fall down the *y*-axis moving to $-\infty$. Although it does stop moving at t = 1, it will start to fall down immediately after. As $t \to \infty$ we have $\frac{da}{dt} \to -\infty$

Particle *b* will settle down at b = 1 (we call this a **stable steady state**). As $t \to \infty$ we have $\frac{db}{dt} \to 0$ as it is drawn toward b = 1

Particle c will shoot up the y-axis moving to ∞ (as it moves away from c = 1 which is an **unstable steady state** as if c = 1 then $\frac{dc}{dt} = 0$ no matter what t is). As $t \to \infty$ we have that $\frac{dc}{dt} \to \pm \infty$ depending on the sign of 1 - c A differential of the form

$$\frac{dy}{dt} = f(t)$$

Likely has NO steady states even though $\frac{dy}{dt}$ may be 0 at some time t. A steady state is when $\frac{dy}{dt} \rightarrow 0$ as $t \rightarrow \infty$

So f(t) would need a horizontal asymptote but it is still going to depend on the initial condition. ALSO, it is not even enough we have a horizontal asymptote

Example: Consider the functions

dy _	dy 1	<i>dy</i> 1
$\frac{dt}{dt} = t$	$\frac{1}{dt} = \frac{1}{t}$	$\frac{1}{dt} = \frac{1}{t^2}$

We can solve for *y* in all of these cases

$\frac{d}{dt} [???] = t$ $\Rightarrow y = \frac{t^2}{2} + C$	$\frac{d}{dt} [???] = \frac{1}{t}$ $\Rightarrow y = \ln t + C$	$\frac{d}{dt} [???] = \frac{1}{t^2}$ $\Rightarrow y = -\frac{1}{t^2} + C$
$\Rightarrow y = \frac{1}{2} + c$		$\Rightarrow y = -\frac{1}{t} + C$
	Here $rac{dy}{dy}$ has a horizontal	

Here $\frac{dy}{dt}$ has no horizontal asymptote and the solution is a parabola so it $y \to \infty$ as $t \to \infty$ asymptote of 0 which suggest as steady state, but the solution is a log so still we have $y \rightarrow \infty$ as $t \rightarrow \infty$

In the last case $\frac{dy}{dt}$ has a horizontal asymptote of 0 and the solution is $\frac{1}{t}$ so there is a steady state of $y \rightarrow C$ as $t \rightarrow \infty$

In general, we will not be looking much at differentials where $\frac{dy}{dt} = f(t)$ for the remainder of the unit.

Example: Determine the steady states and their stability of

$$\frac{dy}{dt} = y^2(y-1)(y+4)$$

We look for where $\frac{dy}{dt} = 0$ this is the zeros of the polynomial given and at

$$v = 0, 1, -4$$

To see the behaviour around these steady states we can sketch the differential equation as a function of y. Using the sign of y' we can see where the particle would move. If y' > 0 then the particle moves to a more positive position and if y' < 0 the particle moves to a more negative position.

We have that -4 is stable, 0 is semi-stable and 1 is unstable

Unit 7: Differential Equations

Practice: Determine the steady states and stability of

$$\frac{dP}{dt} = (P^2 - 1)(2 - P)$$

Practice: Determine the steady states and stability of

$$\frac{da}{db} = (1-b)(2a+4)$$

Practice Problems: Steady state practice problems