
Unit 5: Differential Equations                                                                  Antiderivatives and Simplifying Techniques: February 6 
 

Finding the Antiderivative 
Goal:  

• Understand antiderivative is the backwards derivative 

• Have derivatives memorized so antiderivatives are also memorized 

• Can use simplifying techniques to find antiderivative: 𝑢-substitution, long division, completing the square 

Terminology: 

• 𝑢-substitution 

 
We know that  

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

= 𝐹(𝑥) 

means that 𝐹 is an antiderivative of 𝑓, that is if we differentiate 𝐹 we get 𝑓: 
𝑑

𝑑𝑥
𝐹(𝑥) = 𝑓(𝑥) 

The indefinite integral is not an area, but a symbol for the set of antiderivatives 𝐹 

∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑥) + 𝐶 

 
𝐹(𝑥) 

 

 
𝑑

𝑑𝑥
𝐹(𝑥) = 𝑓(𝑥) 

 

∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑥) + 𝐶 

 

 

Polynomials 
 

 
 
 

𝑥𝑚, 𝑚 ≠ 0 
 
 
 

  

 

Exponential and Log 
 

 
 
 

𝑒𝑥 
 
 
 

  

 
 
 

𝑏𝑥 
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𝐹(𝑥) 

 

 
𝑑

𝑑𝑥
𝐹(𝑥) = 𝑓(𝑥) 

 

∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑥) + 𝐶 

 

 
 
 

ln 𝑥 
 
 
 

  
 
 
  

 
 
 

log𝑏 𝑥 

  
 
 
 
 
 
 

 
Trig 

 

 
 
 

sin 𝑥 

 
 
 
 
 
 
 

 

 
 
 

cos 𝑥 

 
 
 
 
 
 
 

 
 

 
 
 

tan 𝑥 

 
 
 
 
 
 
 

 

 
 
 

sec 𝑥 
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𝐹(𝑥) 

 

 
𝑑

𝑑𝑥
𝐹(𝑥) = 𝑓(𝑥) 

 

∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑥) + 𝐶 

 

 
 
 

csc 𝑥 
 
 
 

  
 
 
  

 
 
 

cot 𝑥 

  
 
 
 
 
 
 

 
Inverse Trig 

 

 
 
 

arcsin 𝑥 

 
 
 
 
 
 
 

 

 
 
 

arccos 𝑥 

 
 
 
 
 
 
 

 
 

 
 
 

arctan 𝑥 

 
 
 
 
 
 
 

 

 
 
 

arcsec 𝑥 
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𝐹(𝑥) 

 

 
𝑑

𝑑𝑥
𝐹(𝑥) = 𝑓(𝑥) 

 

∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑥) + 𝐶 

 

 
 
 

arccsc 𝑥 

 
 
 
 
 
 
 

 
 

 
 
 

arccot 𝑥 

 
 
 
 
 
 
 

 

 
Derivative Rules 

 

 
 
 
 

𝑓 ⋅ 𝑔 
 
 
 
 

  

 
 
 
 

𝑓

𝑔
 

 
 
 
 

  

 
 
 
 

𝑓(𝑔(𝑥)) 
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We really only know how to integrate (find an antiderivative) for these basic functions. If we are given any other 
function we need to transform it into something that looks like what is in the above table.  
 
In general integration is complex. Almost an art because you need a certain amount of creativity to shape the integrand 
into something you can work with. There are a lot of integration of integration techniques of which we will learn a few 
but this is a comic by xkcd that does a good job of showing the difference between integration and differentiation 
 

 
 

Source: https://xkcd.com/2117/ 
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Technique 1: Substition (commonly called 𝑢-substution)  
 
The idea here is that                      is hard, but                             is easier (because of chain rule!). We replace all of our 𝑥 
values with a 𝑢 value instead. 
 
Remember, where did the notation 𝑓(𝑥)𝑑𝑥 come from? 
 
 
 
 
 
 
Example: Use substitution to find 𝑑𝑢 

𝑥 − 2 = 𝑢 
 
 
 
 
 
 
Practice: Use substition to find 𝑑𝑢 

sin 𝑥 = 𝑢 
 
 
 
 
 
 
 
So we are going to use 𝑢-substitution when you see a function 𝑢(𝑥) and its derivative 𝑑𝑢 in the integrand as a product 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑢)𝑑𝑢 = ∫ 𝑓(𝑢(𝑥)) ⋅ 𝑢′(𝑥)𝑑𝑥 

 
Example:  

∫
𝑥 + 4

√𝑥2 + 8𝑥 − 9
𝑑𝑥 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∫ 𝑓(𝑥)𝑑𝑥  ∫ 𝑓(𝑢(𝑥))𝑑𝑢  
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Practice: Evaluate the integral  

∫
2𝑥 ln(𝑥2 + 1)

𝑥2 + 1
𝑑𝑥 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Technique 2: Substitution after writing in a different form 
 
Example: Evaluate the integral 

∫ tan 𝑥 𝑑𝑥 
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Practice: Evaluate the integral 

∫ sin2 𝑥 𝑑𝑥 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Technique 3: Substitution after long division. 
 
Example:  

∫
𝑥3 + 2𝑥 + 1

𝑥 − 1
𝑑𝑥  
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Practice: Evaluate the integral 

∫
𝑥4 − 𝑥2 + 𝑥 − 1

𝑥 + 4
𝑑𝑥 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Technique 4: Substitution after completing the square (paired with trig) 
 
Example:  

∫
𝑑𝑥

𝑥2 − 6𝑥 + 13
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Practice: Evaluate the integral 

∫
𝑑𝑥

√−𝑥2 − 6𝑥
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Practice Problems: 6.1 # 7-24 (what you need), 52 
                                   6.2 # 9-28 (what you need), 29, 30, 31-38 (what you need), 47, 48, 50, 51 

                                 6.1 # 60, 61 
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