1. Consider the function:

What is the range of f ?

$$
f: \mathbb{R} \rightarrow\{y \mid 0 \leq y \leq 4, y \in \mathbb{Z}\}
$$

a. The integers
b. The reals
c. The interval [0, 4]
d. The set $\{0,1,2,3,4\}$
2. Consider the relation $g=\{(1,4),(3,4),(2,1)\}$

Which of the following are true?

c. $\quad g(1)=2$
b. g is 1-to-1
d.
(4) is undefined
3. Given the function:

$$
h(x)=f(g(x))=\frac{4}{9 x^{2}}+1
$$

Which of the following functions are valid pairs of f and g

b. $\quad f(x)=\frac{4}{x}, g(x)=9 x^{2}+1$

c. $\quad f(x)=\frac{1}{x^{2}}, g(x)=\frac{3 x}{2}+1$
d. $f(x)=x^{2}+1, g(x)=\frac{2}{3 x}$
4. If $f(2)=5$ and $g(5)=7$ then which of the following are true?
a.

b.

$$
(g \circ f)(2)=7
$$

d.

$(g$ (g) $f(5)=5$
5. Which of the following expressions shows a horizontal compression AND a shift right?
a.

$$
T:(x, y) \mapsto(3 x+2, y)
$$

b.
$T:(x, y) \mapsto\left(\frac{1}{4} x+1, y\right)$
c.

$$
T:(x, y) \mapsto\left(\frac{1}{5} x+3, y\right)
$$

e.

$$
g(x)=f(3 x+2)
$$

f.

$$
g(x)=f\left(\frac{1}{4} x+1\right)
$$

$$
g(x)=f(2 x-1)
$$

h.

$$
g(x) \neq f\left(\frac{1}{5} x+3\right)
$$

6. Given the following transformation which is an accurate description of the transformation?

$$
\begin{gathered}
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
T:(x, y) \mapsto\left(-x, \frac{2}{3} y-5\right)
\end{gathered}
$$

a. Reflected over the x-axis, vertically compressed by $\frac{3}{2}$, down 5 .

c. Reflected over the $x-2 \times 15$, vertically expanded by
$\frac{3}{2}$, up 5
d. Reflected over the y-axis, vertically expanded by $\frac{3}{2}$, up 5
7. Which of the following are true about f and f^{-1} ?
a. They are reflected over the line $y=x$

e. f^{-1} is 1-to-1
b. They are reflected
d.

8. If $f:(-\infty, 1] \rightarrow[0, \infty)$ and $f: x \mapsto \sqrt{1-x}$ then which of the following are true of f^{-1} ?
a. $f^{-1}(\rightarrow, 1] \rightarrow[0,1]$
c. $f^{-1}: x \mapsto 1-x^{2}$
e. $f^{-1}: \sqrt{1-x} \mapsto x$

 $1-x^{2}$
9. Consider that f has a domain of $[2,8]$ and range of $[-2,4]$. A transformation T transforms \mathbb{R}^{2} as follows:

$$
T:(x, y) \mapsto\left(2 x+1,-\frac{1}{2} y-3\right)
$$

$$
\begin{aligned}
& \text { How has the domain and range of } f^{-1} \text { changed after the transformation? } \\
& f:[2,8] \rightarrow[-2,4] \quad f^{-1}:[-2,4] \rightarrow[2,8]
\end{aligned}
$$

$$
\begin{aligned}
& \text { set horiz } \\
& \rightarrow \text { Rom } \\
& \text { exp byz } \\
& \rightarrow \text { down } 3 \text { right } 工 \\
& \text { Domain } \\
& \text { Rays } \\
& {[2,8] \rightarrow[-8,-2] \rightarrow[-4,-1] \rightarrow[-7,-4]}
\end{aligned}
$$

