Derivative of the Exponential

Goal	•
Guai	•

- Can take the derivative of e^x with other derivative rules
- Understands that *e* is built to be its own derivative.

Terminology:

Euler's Number

Reminder:

• Make-up Test on Thursday March 5th after school

Review: Sketch the function $f(x) = 2^x$ and $g(x) = 3^x$

On the board try to determine f'(x) and g'(x)

Mini-Unit 6: Derivatives of Exponentials and Logs

From the video we are motivated to find a number $a \in (2,3)$ such that

$$\frac{d}{dx}a^x = a^x \cdot 1$$

We define this base as *e*

And because of chain rule, we know that if $y = e^{kx}$, then $y' = k \cdot e^{kx}$. So, you can take the derivative of any exponential function by using base e.

Video Example: If $y = 2^x =$

Video Example: If $y = 3^x =$

Practice: Find f'(x) given that:

$$f(x) = \frac{e^{-x^2}}{1+5^x}$$

Practice Problems: 8.2: # Example 4, 4 (skip the one with trig), 5, 6, 7-10, 14	
8 2 # 16	
8.4: # 4abc	

In Class Evidence

Example 4. Accurately sketch the graph of

4. Differentiate the following:

$$y = \sqrt{x + e^{1 - x^2}}$$

 $y = x5^{\sqrt{x}}$

6. Find dy/dx if $e^{xy} = 2x + y$

14. Find the solution to $e^x = -x - 1$ accurate to 6 decimal places.

16. Find the millionth derivative of $f(x) = xe^{-x}$