Derivative of the Exponential

Goal:

- Can take the derivative of e^{x} with other derivative rules
- Understands that e is built to be its own derivative.

Terminology:

- Euler's Number

Reminder:

- Make-up Test on Thursday March $5^{\text {th }}$ after school

Review: Sketch the function $f(x)=2^{x}$ and $g(x)=3^{x}$

On the board try to determine $f^{\prime}(x)$ and $g^{\prime}(x)$

From the video we are motivated to find a number $a \in$ (2.3) such that

$$
\frac{d}{d x} a^{x}=a^{x} \cdot 1
$$

We define this base as e

And because of chain rule, we know that if $y=e^{k x}$, then $y^{\prime}=k \cdot e^{k x}$. So, you can take the derivative of any exponential function by using base e.

Video Example: If $y=2^{x}=$

Video Example: If $y=3^{x}=$

Practice: Find $f^{\prime}(x)$ given that:

$$
f(x)=\frac{e^{-x^{2}}}{1+5^{x}}
$$

In Class Evidence

Example 4. Accurately sketch the graph of

$$
y=e^{-x^{2}}
$$

4. Differentiate the following:

$$
y=\sqrt{x+e^{1-x^{2}}} \quad y=x 5^{\sqrt{x}}
$$

6. Find $d y / d x$ if $e^{x y}=2 x+y$
7. Find the solution to $e^{x}=-x-1$ accurate to 6 decimal places.
8. Find the millionth derivative of $f(x)=x e^{-x}$
