Derivative of the Logarithm

Goal:

- Can take the derivative of $\ln x$ with other derivative rules
- Understands how implicit differentiation is useful.

Terminology:

Natural Logarithm

Reminder:

• Make-up Test on Thursday March 5th after school

Review: Find $\frac{dy}{dx}$ (note that u is not constant)

$$\frac{e^y}{x} = 2^{u^2 + u}$$

The natural thing to ask next is what is the derivative of the inverse of the exponential? What is $\frac{dy}{dx}$ if $y = \ln x$

And if you want to find the derivative of a log with any base ...

$$y = \log_b x$$

Example: Find dy/dx if we have the following

$$y = \ln(x \cdot \log 2x)$$

Practice: Find dy/dx if we have the following

$$y = \ln^3\left(\frac{2x-1}{x^2}\right)$$

Practice Problems: 8.4: # 1 (skip the one with trig), 3, 5-10

In Class Evidence

8. Accurately sketch the graph of

1 and 3. Differentiate the following: $y = \ln \frac{x}{\sqrt{x^2 + 1}}$

 $y = \log_5(3x - 8)$

Mini-Unit 6: Derivatives of Exponentials and Logs

5. Find the equation of the tangfent line to the curve

 $y = \log x$

At the point (100, 2)

6. Find dy/dx if $\ln(x + y) = y - 1$

10. Find the solution to $\ln x = 2 - x$ accurate to 6 decimal places.