Logarithmic Differentiation

Goal:

- Can use log laws to take the derivative of very-fast growing functions like x^{x}
- Can use log laws to take derivative of massive products and quotients

Terminology:

- Logarithmic Differentiation

Reminder:

- Quest on Friday

Review: Find y^{\prime} given the following (you probably want to do this on the board...)

$$
y=\ln \sqrt{\frac{(5-x)^{3} \cdot \ln \left(x^{2}+1\right)}{e^{6 x} \cdot \sqrt[3]{-4 x+7}}}
$$

Example: Find $d y / d x$ if

$$
y=x^{x}
$$

Practice: Find $d y / d x$ if

$$
y=x^{2^{x}}
$$

Practice: Find $d y / d x$ if

$$
y=\ln ^{\sqrt{x}} x
$$

Practice Problems: 8.6: \# 1, 2abe, 3, 4
\# 3 but tangent line passes through (2,0).
Solution $y=a^{a}(\ln a+1)(x-2)$, where $a=2.51971151 \ldots$ or $0.210392243 \ldots$

In Class Evidence

4. Accurately sketch the graph of

$$
y=x^{-\ln x}
$$

Compute the $\lim _{x \rightarrow 0^{+}} x^{-\ln x}$ and $\lim _{x \rightarrow \infty} x^{-\ln x}$ by writing $x^{-\ln x}=e^{\ln \left(x^{-\ln x}\right)}$ and simplifying.

1. Differentiate the following:

$$
y=\frac{x \sqrt{x+1}}{(x+2)\left(x^{3}+1\right)}
$$

$$
y=\sqrt{\frac{x^{2}+1}{x^{2}+4}}
$$

2. Differentiate the following

$$
y=x^{x^{2}} \quad y=\ln ^{x} x
$$

3. (Spicy) Find the equations of the tangent line to the curve $y=x^{x}$ at the point $(2,0)$
