Logarithmic Differentiation

Goal:

- Can use log laws to take the derivative of very-fast growing functions like x^x
- Can use log laws to take derivative of massive products and quotients

Terminology:

Logarithmic Differentiation

Reminder:

Quest on Friday

Review: Find y' given the following (you probably want to do this on the board...)

$$y = \ln \sqrt{\frac{(5-x)^3 \cdot \ln(x^2+1)}{e^{6x} \cdot \sqrt[3]{-4x+7}}}$$

What does this problem teach us?

Example: Find dy/dx if

 $y = x^x$

Practice: Find dy/dx if

$$y = x^{2^x}$$

Practice: Find dy/dx if

$$y = \ln^{\sqrt{x}} x$$

Practice Problems: 8.6: # 1, 2abe, 3, 4

3 but tangent line passes through (2,0). Solution $y = a^{a}(\ln a + 1) (x - 2)$, where a = 2.51971151 ... or 0.210392243 ...

In Class Evidence

4. Accurately sketch the graph of

 $y = x^{-\ln x}$

1. Differentiate the following:

$$y = \frac{x\sqrt{x+1}}{(x+2)(x^3+1)}$$

$$y = \sqrt{\frac{x^2 + 1}{x^2 + 4}}$$

2. Differentiate the following

$$y = x^{x^2} y = \ln^x x$$

3. (Spicy) Find the equations of the tangent line to the curve $y = x^x$ at the point (2, 0)