Exponential Cover Page; What I know and can do

where $q_{k+1} = f \cdot a_k$ What is a series? The total of a segmence summed up $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ Is the following equal or not? $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $(reasoning)$ What is Euler's number? $e = 2 \Rightarrow 1 \leqslant 2 \leqslant 1 \iff 1 \iff 2 \iff 3 \iff 3$	Question	First Day	Last Day
What is a series? The total of a sequence summed up $\sum_{k=1}^{n}(a_k+1)=1+\sum_{k=1}^{n}a_k$ is the following equal or not? $\sum_{k=1}^{n}(a_k+1)=1+\sum_{k=1}^{n}a_k$ $\sum_{k=1}^{n}(a_k+1)=1+\sum_$	What is a geometric		a list of the
What is a series? The total of a sequence summed up $\sum_{k=1}^{n}(a_k+1)=1+\sum_{k=1}^{n}a_k$ is the following equal or not? $\sum_{k=1}^{n}(a_k+1)=1+\sum_{k=1}^{n}a_k$ $\sum_{k=1}^{n}(a_k+1)=1+\sum_$	sequence?		02 1(51 01 17)
Is the following equal or not? $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = (a_1 + 1) + (a_1 + 1)$			where $q_{k+1} = r \cdot q_k$
Is the following equal or not? $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = (a_1 + 1) + (a_1 + 1)$			
Is the following equal or not? $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = (a_1 + 1) + (a_1 + 1)$			
Is the following equal or not? $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = (a_1 + 1) + (a_1 + 1)$			
Is the following equal or not? $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $= \sum_{k=1}^{n} (a_k + 1) = (a_1 + 1) + (a_1 + 1)$			
Is the following equal or not? $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}$	What is a series?		the total of a
Is the following equal or not? $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}$			
Is the following equal or not? $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $\sum_{k=1}^{n} (a_k + 1) = (a_1 + 1) + (a_2 + 1)$ $\sum_{$			seguera summed up
Is the following equal or not? $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $\sum_{k=1}^{n} (a_k + 1) = (a_1 + 1) + (a_2 + 1)$ $\sum_{$			
$\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $\sum_{k=1}^{n} (a_k + 1$			2 ak
$\sum_{k=1}^{n} (a_k + 1) = 1 + \sum_{k=1}^{n} a_k$ $\sum_{k=1}^{n} (a_k + 1$			
(reasoning) What is Euler's number? $e = 2 \pi g 28 \text{the nectural base of exponential functions.}}$ $slope + orea + value \text{ore all the same}$ Sketch $f(x) = -2^{\frac{x-1}{5}} + 1$	Is the following equal or not?		. .
(reasoning) What is Euler's number? $e = 2 \pi g 28 \text{the nectural base of exponential functions.}}$ $slope + orea + value \text{ore all the same}$ Sketch $f(x) = -2^{\frac{x-1}{5}} + 1$	n n		$\sum (a_{n+1}) = (q_1 + 1) r(a_2 + 1)$
(reasoning) What is Euler's number? $e = 2 \pi g 28 \text{the nectural base of exponential functions.}}$ $slope + orea + value \text{ore all the same}$ Sketch $f(x) = -2^{\frac{x-1}{5}} + 1$	$\sum_{k=0}^{\infty} (a_k + 1) = 1 + \sum_{k=0}^{\infty} a_k$		K=1 t+ (a.+1)
What is Euler's number? $e = 2.71828 \text{the natural base of exponential functions.}}$ $slope + crea + value \text{ore all the same}$ Sketch $f(x) = -2^{\frac{x-1}{5}} + 1$	k=1 $k=1$ $k=1$		= =
What is Euler's number?			2ak + 1+1++
What is Euler's number?	(reasoning)		# 5 cm + 1
Sketch $f(x) = -2^{\frac{x-1}{5}} + 1$ Particular base of exponential functions. As slope + area + value are all the same of th			Zak
Sketch $f(x) = -2^{\frac{x-1}{5}} + 1$	What is Euler's number?		e=271828 the
Sketch $f(x) = -2^{\frac{x-1}{5}} + 1$			natural base of
Sketch $f(x) = -2^{\frac{x-1}{5}} + 1$			examental functions
Sketch $f(x) = -2^{\frac{x-1}{5}} + 1$			
Sketch $f(x) = -2^{\frac{x-1}{5}} + 1$			& Stope + orea + rather
(b) 2 (b) (b)	Sketch		ONE WILL THE SHOPE
(b) 2 (b) (b)			
(communicating)) (**)		- 112 17 Y= 1
(communicating)			2
(communicating)			
(communicating)			
(communicating)			T
	(communicating)		

Question	First Day	Last Day
What is a logarithm?		The inverse of an exponential
		te $log x = ?$ asus $lo? = x$
Solve for <i>x</i>		
$2e^{-0.1(x+1)} + 3 = 4$		$X = -10 \ln \left(\frac{4-3}{2} \right) - 1$
		x = 10 ln 2 -1
(solving)		= 5.93
What are the log laws analogous to?		exponential laws just switch inside to outside operations
Solve for x $\log x - 2 \ln x = 1$	100=K	$\log x - \ln x^2 = 1$
$c = \frac{1}{\log e}$	$\frac{\log x - \log x^{2}}{\log x} = 1$ $\log x - \log x^{2c} = 1$	$\frac{\ln x}{\ln 10} - \ln x^2 = 1$ $\ln x^{k-1} = 1$ $\ln x^{k-2} = 1$
(reasoning)	$ \log X^{-2c} = $	x k-2 = e
	$\chi = 10^{1-2c}$	$X = 6_{K-3} = 9.258$