Exponential Inverses

KNOW

The inverse of an exponential is a log of the same base and knows the domain and range of a log function.

DO
Can find the exact equation in base e to an exponential. Can graph the basic $\ln x$.

UNDERSTAND

Function Characteristics:

Vocab \& Notation

- Logarithm, $\log x$
- Natural $\log , \ln x$

Graph the inverse of $y=e^{x}$ and $y=(1 / 3)^{x}=3^{-x}$

Since the exponential function $f(x)=b^{x}$ needs that the base $b>0$ and $b \neq 1$, we have the same restriction on the function $f^{-1}(x)=\log _{b} x$.

There are three common bases that you will use depending on your field.

- Engineering: Base 10
- Science and Mathematics: Base e
- Computer Science: Base 2

Example: Solve for k

$$
500=10^{k} \quad 2=e^{k}
$$

Practice: Solve for x

$$
\begin{array}{lll}
1200=10^{x} & 20=e^{x} & 9=\log _{2} x \\
5=\frac{1}{4^{k}} & 3=\log k & 8=\ln x
\end{array}
$$

$$
17=\ln \left(e^{k}\right)
$$

$32=10^{\log k}$
$22=\ln (\ln k)$

When we evaluate an exponential $2^{6}=x$, we are asking: 2 to the power of 6 is what?

When we evaluate a logarithm, we are asking the inverse. For $\log _{2} 32=x$ we are asking:
2 to what power is 32 ?

Practice: Without a calculator evaluate the following:
$\log _{3} 729$
$\log _{5} 625$
$\log _{19} 361$

Practice Problems: 8.1 page 380-381 \# 1, 4-9, 12-15, 20-24

