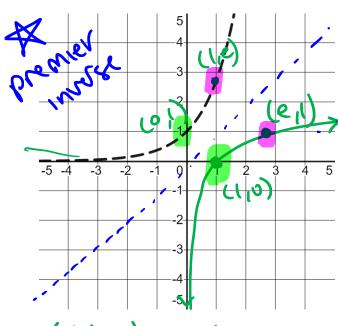
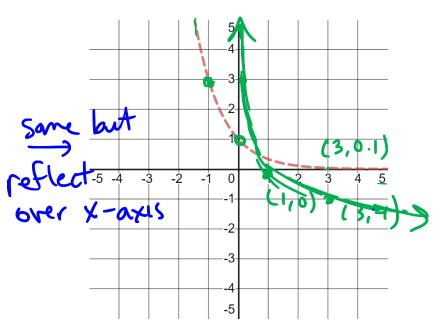
Exponential Inverses

KNOW

The inverse of an exponential is a log of the same base and knows the domain and range of a log function.

Can find the exact equation in base e to an exponential. Can graph the basic $\ln x$.


UNDERSTAND


Function Characteristics:

Vocab & Notation

- Logarithm, log x
- Natural log, $\ln x$

Graph the inverse of $y = e^x$ and $y = (1/3)^x = 3^{-x}$

se is a function (one-to-one)

f: IR > (0,00) f-1: (0,00) -> IR

inverse will be increasing if original

INVESS

Since the exponential function $f(x) = b^x$ needs that the base b > 0 and $b \ne 1$, we have the same restriction on the function $f^{-1}(x) = \log_b x$. ~ symbols for

There are three common bases that you will use depending on your field.

$$\rightarrow 10^{4} = f_{14}$$

Science and Mathematics: Base e

Computer Science: Base 2

Example: Solve for *k*

$$|9| (500 = 10^k)$$
 $|9| (500 = 10g)$
 $|9| (500 = 10g)$

$$\ln \left(2 = e^{k}\right)$$

$$\ln 2 = \ln e^{k}$$

Practice: Solve for x

$$\log \left(1200 = 10^x\right)$$

$$Q_{h}$$
 $\left(20=e^{x}\right)$

$$\sqrt{2} = 1.414 - \frac{1}{9} = \log_2 x$$

$$5 = \frac{1}{4^k}$$

$$3 = \log k$$

$$8 = \ln x$$

$$2n(\frac{1}{5}=e^{k})$$

enlt)=K=-1.609

$$17 = \ln(e^k)$$

$$32 = 10^{\log k}$$

$$22 = \ln(\ln k)$$

$$e^{\left(e^{2^2} = \ln u\right)}$$

When we evaluate an exponential $2^6 = x$, we are asking: 2 to the power of 6 is what?

When we evaluate a logarithm, we are asking the inverse. For $log_2 32 = x$ we are asking:

2 to what power is 32?

$$2^{\times}=32 \rightarrow \times=5$$

2/32=5 2/32=5/

Practice: Without a calculator evaluate the following:

 $log_3 729$

log₅ 625

 $log_{19} 361$

3 to some power is 729

19 to some power 15 361

5 to some power 13625