Exponential Intro

KNOW The general shape of an exponential graph depending on if the base is larger than 1 or less than 1.	DO Ca th
Vocab \& Notation - Exponential growth/decay - Euler's number	

Consider the geometric sequence $\left(2^{k}\right)_{k \in \mathbb{Z}}$. Plot it on the graph below.

Do the same for the sequences $\left(1^{k}\right)_{k \in \mathbb{Z}} ;\left(\frac{1}{2^{k}}\right)_{k \in \mathbb{Z}} ;$ and $\left((-2)^{k}\right)_{k \in \mathbb{Z}}$ and graph them below.

The general graph form $y=b^{x}$ for $b>1$

If $b \in(0,1)$, then

Practice: Graph the functions $f(x)=5^{x} ; g(x)=\left(\frac{1}{4}\right)^{x} ; h(x)=3^{x} ; k(x)=\left(\frac{2}{3}\right)^{x}$.

Increasing functions: Growth

Decreasing functions: Decay

Arguably the most important exponential function uses Euler's Number:

$$
f(x)=(2.71828 \ldots)^{x}=e^{x}
$$

And the important thing is that we can change from one base to another.

$$
f(x)=2^{x}=\left(e^{0.7}\right)^{x}=e^{0.7 x}
$$

We'll talk more about this next week on finding that power for e, but right now just be comfortable that we can do this at least through guess and check and when you start doing calculus you will only want to work exclusively with base e.

For now, let's look to see how any exponential function could be defined by an arbitrary base.
Consider the specific case where a population doubles every year.

Population	1						
Time	0						

And now, the general case where a population grows at a rate r and it takes T years to grow that much or that little.

Population	1						
Time	0						

Example: Determine two equations for the following graph, and one equation in base e.

Practice: Determine two equations for the following graph, and one equation in base e.

Practice: Determine an equation in base e for an exponential that passes through $(0,1)$ and the point $(5,7)$

Practice Problems: 7.1 page 342-345 \# 2-5, 7, 15 (modelling practice \# 6, 8-10, 12)

Practice Building Equations

Build an exponential function in base something and base e given that it passes through the indicated point. For base e, just get the exponent correct to one decimal (although you could use a graphing calculator to solve it more precisely). They all have a horizontal asymptote of $\boldsymbol{y}=\mathbf{0}$

1. Through $(0,1)$ and $(9,5)$
2. Through $(0,1)$ and $(-8,7)$
3. Through $(0,1)$ and $(8,2)$
4. Through $(0,1)$ and $(-5,0.5)$
5. Through $(0,1)$ and $(0.25,6)$
6. Through $(0,1)$ and (a, b)

Solutions: 1) $y_{1}=5^{x / 9}=e^{0.179 x}$; 2) $y_{2}=\left(\frac{1}{7}\right)^{x / 8}=7^{-x / 8}=e^{-0.243 x}$; 3) $y_{3}=2^{x / 8}=e^{0.087 x}$;
4) $y_{4}=\left(\frac{1}{2}\right)^{-x / 5}=2^{x / 5}=e^{0.139 x}$; 5) $y_{5}=6^{4 x}=e^{7.167 x}$; 6) $y_{6}=b^{x / a}$. Also $e^{k x}$ with $k>0$ if $a>0$ and vice versa

