Exponential Intro

KNOW	DO	UNDERSTAND
The general shape of an	Can graph exponential function of	Function Characteristics:
exponential graph depending	the form $f(x) = b^{\frac{x}{T}}$ and can graph	The base is the rate of growth/decay
on if the base is larger than 1	e^x	and the horizontal stretch is the length
or less than 1.		of one growth/decay period
Vocab & Notation		

- Exponential growth/decay
- Euler's number

Consider the geometric sequence $(2^k)_{k\in\mathbb{Z}}$. Plot it on the graph below.

argueby the function Unit 4: Exponential Growth Arguably the most important exponential function uses Euler's Number: $f(x) = (2.71828 \dots)^x = e^x$

pX 2.5 -1-.5 0 0.5 15 -0.5 0 -2.5 -2 -1.5 0.5 1.5 2 2.5 ġ. -3 -1 -0.5

And the important thing is that we can change from one base to another.

We'll talk mo nfortable that we can do this at least through guess and check and when you start doing calculus you will only want to work exclusively with base e.

 $f(x) = 2^{x} = (e^{0.7})^{x} = e^{0.7x}$

For now, let's look to see how any exponential function could be defined by an arbitrary base.

Consider the specific case where a population doubles every year.

And now, the general case where a population grows at a rate r and it takes T years to grow that much or that little.

·~0,

Exponential Intro: April 6

Example: Determine two equations for the following graph, and one equation in base *e*.

Practice: Determine two equations for the following graph, and one equation in base *e*.

Practice: Determine an equation in base e for an exponential that passes through (0,1) and the point (5,7)

Practice Problems: 7.1 page 342-345 # 2-5, 7, 15 (modelling practice # 6, 8-10, 12) 7.2 page 354-357 # 9, 11, 12-14

Practice Building Equations

Build an exponential function in base something and base e given that it passes through the indicated point. For base e, just get the exponent correct to one decimal (although you could use a graphing calculator to solve it more precisely). **They all have a horizontal asymptote of** y = 0

1. Through (0,1) and (9,5)

2. Through (0,1) and (-8,7)

3. Through (0,1) and (8,2)

4. Through (0,1) and (-5,0.5)

5. Through (0,1) and (0.25,6)

6. Through (0,1) and (a,b)

Solutions: 1) $y_1 = 5^{x/9} = e^{0.179x}$; 2) $y_2 = \left(\frac{1}{7}\right)^{x/8} = 7^{-x/8} = e^{-0.243x}$; 3) $y_3 = 2^{x/8} = e^{0.087x}$; 4) $y_4 = \left(\frac{1}{2}\right)^{-x/5} = 2^{x/5} = e^{0.139x}$; 5) $y_5 = 6^{4x} = e^{7.167x}$; 6) $y_6 = b^{x/a}$. Also e^{kx} with k > 0 if a > 0 and vice versa