Exponential Inverses

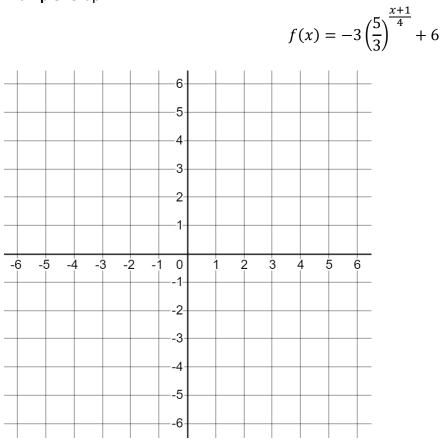
KNOW	DO	UNDERSTAND
The inverse of an exponential	Can find the exact equation in base	Inverse Characteristics:
is a log of the same base and	e to an exponential. Can graph an	Can analyze a log using exponential
knows the domain and range	exponential function. Can use logs	functions and then inverting.
of a log function.	to solve exponentials.	
Vocab & Notation		
• Logarithm, log x		

• Natural log, $\ln x$

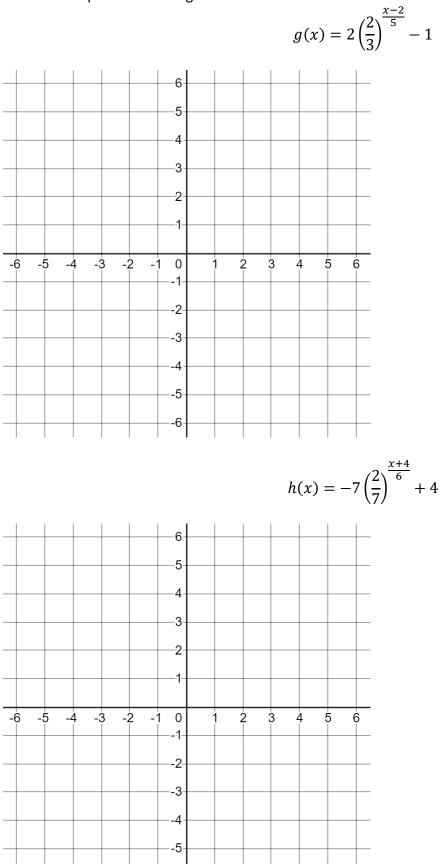
To graph an exponential, we work backwards. Identify the transformations that took place and then add those to the graph.

- Vertical shift
- Horizontal shift
- Vertical stretch
- Horizontal stretch
- Base

Example: Graph



Practice: Graph the following functions.



-6

Notice that the exponential function is

Since the exponential function $f(x) = b^x$ needs that the base b > 0 and $b \neq 1$, we have the same restriction on the function $f^{-1}(x) = \log_b x$.

There are three common bases that you will use depending on your field.

- Engineering: Base 10
- Science and Mathematics: Base *e*
- Computer Science: Base 2

Example: Solve for k $500 = 10^k$ $2 = e^k$ $5 = \ln k$

Practice: Solve for *x*

 $1200 = 10^x$ $20 = e^x$ $9 = \log_2 x$

$$5 = \frac{1}{4^k} \qquad \qquad 3 = \log k \qquad \qquad 8 = \ln x$$

17 =
$$\ln(e^k)$$
 32 = $10^{\log k}$ 22 = $\ln(\ln k)$

This now gives us the tool to put an exponential function b^x exactly in the form of e^{kx} and we can solve exponential functions.

Example: Find the zeros of the functions we graphed

$$f(x) = -3\left(\frac{5}{3}\right)^{\frac{x+1}{4}} + 6 \qquad \qquad g(x) = 2\left(\frac{2}{3}\right)^{\frac{x-2}{5}} - 1$$