Exponential Inverses

To graph an exponential, we work backwards. Identify the transformations that took place and then add those to the graph.

- Vertical shift \rightarrow the asymptote
- Horizontal shift
\rightarrow the x-coordinate of reference pout
- Vertical stretch \rightarrow distance between asymptote + ref. point
- Horizontal stretch \rightarrow horiz. distance from rf. point to rest point
- Base \rightarrow ratio between distances to the asymptote
Example: Graph

$$
f(x)=-3\left(\frac{5}{3}\right)^{\frac{x+1}{4}}+6
$$

$$
\begin{aligned}
& f(-6)=-3\left(\frac{5}{3}\right)^{-5 / 4}+6=4.4 \\
& f(6)=-1.3
\end{aligned}
$$

Practice: Graph the following functions.

$$
g(x)=2\left(\frac{2}{3}\right)^{\frac{x-2}{5}}-1
$$

$$
h(x)=-7\left(\frac{2}{7}\right)^{\frac{x+4}{6}}+4
$$

Notice that the exponential function is 1-to-1 so at must have an inverse function.

$$
f(x)=b^{x} \rightarrow f^{-1}(x)=\log _{b} x
$$

Since the exponential function $f(x)=b^{x}$ needs that the base $b>0$ and $b \neq 1$, we have the same restriction on the function $f^{-1}(x)=\log _{b} x$.
There are three common bases that you will use depending on your field.

- Engineering: Base 10

$$
\begin{aligned}
& \text { Engineering: Base 10 } \\
& f(x)=10^{x} \rightarrow f^{-1}(x)=\log _{10} x=\log x \text { common } \log
\end{aligned}
$$

- Science and Mathematics: Base e natural log

$$
f(x)=e^{x} \rightarrow f^{-1}(x)=\log _{e} x=\ln x=\log x
$$

- Computer Science: Base 2

$$
f(x)=2^{x} \rightarrow f^{-1}(x)=\log _{2} x=l b_{x}=\log x
$$

$$
e^{5}=k=148.4 \ldots
$$

$$
\begin{array}{rrr}
1200=10^{x} & \ln \left(20=e^{x}\right) & 9=\log _{2} x \\
\log (1200)=x & 29=x \\
5=\frac{1}{4^{k}} & 3=\log k & 10^{3}=k \\
4^{k}=\frac{1}{5} & \begin{array}{l}
4=e^{x} \\
\ln (-\ln 4
\end{array} & e^{8}=x \\
\ln 4 \cdot k & \left.\frac{1}{5}\right) \Rightarrow \ln 4 \cdot k=\ln (1 / 5) &
\end{array}
$$

Example: Solve for k

$$
\begin{aligned}
& \log \left(500=10^{k}\right) \\
& \log 500=\log 10^{k} \\
& 2.69 \ldots=k
\end{aligned}
$$

Practice: Solve for x

$$
\ln \left(2=e^{k}\right)
$$

$$
\ln 2=\ln t^{u}
$$

$$
0.69 . .=k
$$

$$
2=e^{\ln 2}
$$

$$
\begin{aligned}
& 17=\ln \left(e^{k}\right) \\
& 17=K
\end{aligned}
$$

$32=10$ 2 ${ }^{2} k$
$32=k$
$e^{e^{22=K(10 k k)}}$

$$
e^{\left(e^{22}\right)}=k \sim 10^{1.5 \text { billon }}
$$

This now gives us the tool to put an exponential function b^{x} exactly in the form of $e^{k x}$ and we can solve exponential functions.

Example: Find the zeros of the functions we graphed

$$
\begin{aligned}
& f(x)=-3\left(\frac{5}{3}\right)^{\frac{x+1}{4}}+6 \\
& g(x)=2\left(\frac{2}{3}\right)^{\frac{x-2}{5}}-1 \\
& e^{k}=5 / 3 \Rightarrow k=\ln (5 / 3) \\
& f(x)=-3 e^{\frac{k(x+1)}{4}}+6=0 \\
& \ln \left(e^{\frac{k}{1}(x+1)}=2\right) \\
& \frac{1}{4} \ln (5 / 3)(x+1)=\ln 2 \\
& x=\frac{4 \ln 2}{\ln (5 / 3)}-1 \quad x=\frac{5 \ln (1 / 2)}{\ln (2 / 3)}+2 \\
& =4.428 \\
& e^{k}=2 / 3 \Rightarrow k=\ln (2 / 3) \\
& 2 e^{\frac{k}{5}(x-2)}-1=0 \\
& \ln \left(e^{\frac{8}{3}(x-1)}=\frac{1}{2}\right) \\
& \frac{\ln (2 / 3)}{5}(x-2)=\ln \left(\frac{1}{2}\right) \\
& =10.548
\end{aligned}
$$

