Exponential Functions

KNOW	DO	Can build equations
Can recognize an		
exponential as increasing		
or decreasing from given	UNDERSTAND for exponentials points. Can identify the Characteristics: asymptote from the graph.	given two points and the asymptote.
The base is the rate of growth/decay, and the horizontal stretch is the length of one growth period. The vertical stretch is how far from the asymptote you start and the vertical shift is the asymptote.		
- Exponential growth/ decay - Euler's number, e		

Consider the geometric sequence $\left(2^{k}\right)_{k \in \mathbb{Z}}$. Plot it on the graph below.

Do the same for the sequences $\left(1^{k}\right)_{k \in \mathbb{Z}} ;\left(\frac{1}{2^{k}}\right)_{k \in \mathbb{Z}} ;$ and $\left((-2)^{k}\right)_{k \in \mathbb{Z}}$ and graph them below.

If $b \in(0,1)$, then

Both pass thru critical point $(0,1)$
$\&$ Both have horizontal asymptote
(only one one side)

Arguably the most important exponential function uses Euler's Number:

$$
f(x)=(2.71828 \ldots)^{x}=e^{x}
$$

$$
e^{i x}=\cos x+i \sin x
$$

$$
\text { for } e^{x} \text {, the }
$$

value, slope + area are the same

And the important thing is that we can change from one base to another.

$$
f(x)=2^{x}=\left(e^{0.7}\right)^{x}=e^{0.7 x}
$$

We'll talk more about this next tomorrow on finding that power for e, but right now just be comfortable that we can do this at least through guess and check and when you start doing calculus you will only want to work exclusively with base e.

For now, let's look to see how any exponential function could be defined by an arbitrary base.

Consider the specific case where a population doubles every year.

just a seometric sequence

And now, the general case where a population grows at a rate r and it takes T years to grow that much or decay to that little.

decay to that little.							
Population	1	r	r^{2}	r^{3}	r^{4}	\cdots	r^{n}
Time	0	T	$2 T$	$3 T$	$4 T$	\cdots	$n T=t$

©

$$
\begin{aligned}
& \text { tine =t population is } r^{n}=r \frac{t}{T} \quad n=\frac{t}{T} \\
& P(t)=r \frac{t}{T} \Rightarrow f(x)=r \frac{x}{T} \rightarrow \text { hor ito. Stretch } \\
& \text { nine two equations for the following graphs, and one equation in base e. by } T
\end{aligned}
$$

Example: Determine two equations for the following graphs, and one equation in base e.

eN

$$
f(x)=2^{\frac{x}{2}}=4 \frac{x}{4}
$$

OR $r=4 \quad T=4$

$$
e^{1.4} \sim 4 \Rightarrow f(x) \sim\left(e^{1.4}\right)^{\frac{x}{4}}=e^{0.35 x}
$$

$$
T=-4 \quad r=3
$$

$$
\begin{aligned}
f(x)=(3)^{\frac{x}{-4}} & =\left(\frac{1}{3}\right)^{\frac{x}{4}} \\
e^{\sqrt[1.1]]{x}} \sim 3 & \sim\left(e^{1.1}\right)^{\frac{x}{-4}} \\
& =e^{-0.275 x}
\end{aligned}
$$

We've looked at doing a horizontal stretch, now we want to add the three other transformations to the exponential.

$$
f(x)=a \cdot b^{\frac{x-c}{T}}+d=a \cdot e^{k(x-c)}+d
$$

After a transformation we will be in one of four situations:

- Increasing or decreasing
- Approaching the asymptote or approaching infinity

* horizontal asymptote only moved by "d" * identify a critical point, the x-coordinate
\& distance from asymptote to CP is "|a|"

Example: Determine an equation in base e for the exponential that passes through the points $(-2,6)$ and

$$
\left.\begin{array}{l}
\substack{(5,-6) \text { and has a horizontal asymptote of } y=-10 . \\
(-2,6) C P \Rightarrow \text { left } \\
T=7 \\
\text { vert } \\
\text { smith }}
\end{array} \quad \Rightarrow g(x)=r,-6\right)=16(4)^{\frac{x}{T}} \quad T=7, r=\frac{4}{16}=\frac{1}{4}
$$

$$
a_{1}=16 \quad a_{2}=4
$$

$$
\begin{array}{ll}
\Rightarrow \begin{array}{ll}
y=-10 \\
(\text { down } 10)
\end{array} & \sim 16\left(e^{1.4}\right)^{\frac{x+2}{-7}}-10 \\
& =16 e^{-0.2(x+2)}-10
\end{array}
$$

