Linearization and Newton's Method

Goal:

- Understands linearization is just the tangent line at a point.
- Understands that linearization "formula" is just point-slope form of tangent line.
- Can use repeated linearization to approximate zeros using your calculator and ANS

Terminology:

- Linearization
- Newton's Method

On the board find the equation of the tangent line to the three curves below at $x=1$ and sketch the curve and its tangent line.

1. $f(x)=x^{2}+x-1, @ x=1$
2. $g(x)=x^{3}-3 x^{2}+x$ @ $x=1$
3. $h(x)=\frac{2 x}{x^{2}-2 x+2}-1$,

What is relevant or what stands out when you compare the tangent line to the original curve?

What we have done is create a linearization of the functions at the point $x=1$

In general if we want to linearize a function at the point $x=a$ we will use point/slope form and have

Newton's Method looks to find the zeros of a function by repeatedly using linearization as follows

- Guess the zero to f, call it z_{0}
- Linearize around $x=z_{0}$, find $L_{0}(x)=f^{\prime}\left(z_{0}\right)\left(x-z_{0}\right)+f\left(z_{0}\right)$
- Find the zero to the linearization, call it z_{1}
- Repeat and linearize around $x=z_{1}$, find $L_{1}(x)$
- Continue until z_{n} approaches a limit point

What does this look like?

So after 3 iterations, we are pretty close to the actual zero.
What if we started with $z_{0}=-1$? What is we started with $z_{0}=4$?

In general we are solving for the zero of $L_{k}(x)=f^{\prime}\left(z_{k}\right)\left(x-z_{k}\right)+f\left(z_{k}\right)$ and then using that to make a new linearization around $x=z_{k+1}$

Example: Find the zeros of $f(x)=x^{2}+x-1$

Practice: Find the zeros of $g(x)=x^{3}-3 x^{2}+x$

Practice Problems: 4.5: \# 1-3, 8, (4 and 5 are good practice to if you need more)

In Class Evidence

1. Start with $z_{0}=0$ and use Newton's method to find the solution to

$$
x^{3}+2 x+1=0
$$

3. (a) Use Newton's method with $z_{0}=2$ to find the solution to

$$
x^{3}-x-2=0
$$

(b) What happens if $z_{0}=1$?
(c) What happens if $z_{0}=0.57$? Sketch the graph to help explain why this is such a poor choice.

8. Sketch the following pairs of curves and find the coordinates of their point of intersection.
(a) $y=x^{3}, y=x+1$

(b) $y=x^{2}+1, x y=1$

(c) $y=x^{5}, y=3 x-1$

					5				

