First Derivative Test and Newton's Method Practice

1. Find all maximum and minimums for the following functions:
a. $f(x)=x^{3}-3 x^{2}+5$
b. $g(x)=-2 x^{3}+24 x$ on $[-1,3]$
c. $h(x)=\frac{1}{2} x^{4}+8 x-5$
2. Use Newton's method to find the zeros to the slope so you can find the local extremas. (Note: This function was made so the slope has zeros at very recognizable fractions in the interval $[-7,4]$)

$$
k(x)=\frac{1}{1000}\left(14.4 x^{5}+169.5 x^{4}+391.667 x^{3}-2050 x^{2}-10500 x\right)
$$

3. Use Newton's method to find the zeros of the slope so you can find ALL extremas of the function on the interval $[-2,1]$ (This function was made so the coefficients look pretty and that was it)

$$
L(x)=x^{5}+2 x^{4}-3 x^{3}-4 x^{2}+5 x
$$

4. Why does Newton's method fail to find zeros of the following function?

$$
M(x)=x^{4}+x+0.5
$$

5. What zeros will the different choices of z_{0} find using Newton's method? (the circled points labeled in Greek letters). Some tangent lines are given.

What would happen if $z_{0}=\delta$ but the entire graph was shifted down very slightly so that there was no zero at B ?

Solutions:

1.

a. Local Max: $f(0)=5$; Local Min: $g(2)=1$
b. Absolute Max: $g(2)=32$; Absolute Min: $g(-1)=-22$; Local Min: $g(3)=18$ (endpoint)
c. Absolute Min: $h(-\sqrt[3]{4})=-14.524$; No maximums
2. Local Max: $k(-5.25)=13.281$; Local $\operatorname{Min}: k(2.5)=-24.915$; Note that $x=-3.33$ is not a critical point since $k^{\prime}(x)$ does not change signs around it
3. Absolute Max: $L(0.507)=1.281$; Absolute Min: $L(-1.071)=-5.035$; Local Min: $L(0.934)=0.969$;

Local Min: $L(-2)=-2$ (endpoint); Local Max: $L(-1.971)=-1.986$; Local Max: $L(1)=1$ (endpoint)
4. Hint: Think about the extremas of the curve. Another hint is in the next problem.
5. A is found by: α and η

B is found by: $\gamma, \delta, \varepsilon$, and ζ
C is found by: β, θ, and λ
If the graph is shifted down then using $z_{0}=\delta$ will result in what happens with the previous question.

