
Unit 4: Applications of the First Derivative                                                                                                   First Derivative Practice 
 

First Derivative Test and Newton’s Method Practice 
1. Find all maximum and minimums for the following functions: 

a. 𝑓(𝑥) = 𝑥3 − 3𝑥2 + 5  

 

 

 

 

 

 

 

 

b. 𝑔(𝑥) = −2𝑥3 + 24𝑥 on [−1, 3] 

 

 

 

 

 

 

 

 

c. ℎ(𝑥) =
1

2
𝑥4 + 8𝑥 − 5 
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2. Use Newton’s method to find the zeros to the slope so you can find the local extremas. (Note: This 

function was made so the slope has zeros at very recognizable fractions in the interval [−7, 4] ) 

𝑘(𝑥) =
1

1000
(14.4𝑥5 + 169.5𝑥4 + 391.667𝑥3 − 2050𝑥2 − 10500𝑥) 
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3. Use Newton’s method to find the zeros of the slope so you can find ALL extremas of the function on 

the interval [−2, 1] (This function was made so the coefficients look pretty and that was it) 

 

𝐿(𝑥) = 𝑥5 + 2𝑥4 − 3𝑥3 − 4𝑥2 + 5𝑥 
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4. Why does Newton’s method fail to find zeros of the following function? 

 

𝑀(𝑥) = 𝑥4 + 𝑥 + 0.5 
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5. What zeros will the different choices of 𝑧0 find using Newton’s method? (the circled points labeled in 

Greek letters). Some tangent lines are given. 

 

What would happen if 𝑧0 = 𝛿 but the entire graph was shifted down very slightly so that there was no zero at 

𝐵? 
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Solutions: 

1.  

a. Local Max: 𝑓(0) = 5; Local Min: 𝑔(2) = 1 

b. Absolute Max: 𝑔(2) = 32; Absolute Min: 𝑔(−1) = −22; Local Min: 𝑔(3) = 18 (endpoint) 

c. Absolute Min: ℎ(−√4
3

) = −14.524; No maximums 

2. Local Max: 𝑘(−5.25) = 13.281; Local Min: 𝑘(2.5) = −24.915; Note that 𝑥 = −3.33 is not a critical 

point since 𝑘′(𝑥) does not change signs around it  

3. Absolute Max: 𝐿(0.507) = 1.281; Absolute Min: 𝐿(−1.071) = −5.035; Local Min: 𝐿(0.934) = 0.969; 

Local Min: 𝐿(−2) = −2 (endpoint); Local Max: 𝐿(−1.971) = −1.986; Local Max: 𝐿(1) = 1 (endpoint) 

4. Hint: Think about the extremas of the curve. Another hint is in the next problem. 

5. 𝐴 is found by: 𝛼 and 휂 

B is found by: 𝛾, 𝛿, 휀, and 휁 

C is found by: 𝛽, 휃, and 𝜆 

If the graph is shifted down then using 𝑧0 = 𝛿 will result in what happens with the previous question. 

 


