## Optimization: Distances

## Goal:

- Can interpret the zeros of the derivative of some function.
- Can create an equation for geometrically connected obects.

Terminology:

- Optimization

Reminder:

- Test on Feb $4{ }^{\text {th }}$

We know that local maximum and minimums occur for the function $f$ when $f^{\prime}$ changes sign (First Derivative Test). Optimization is the application of finding max and minimums in order to maximize material used, or minimize cost to build.

Example: What is the largest rectangle (in terms of area) that can fit between the parabolas?

$$
\begin{gathered}
y=4-x^{2} \\
y=\frac{1}{2} x^{2}-2
\end{gathered}
$$

Practice: What is the largest rectangle (in terms of perimeter) that can fit between the parabolas?

Example: Fiber optics need to be laid between two communities. Community A is along a river that is 1 km wide, on the opposite side is community B which is 10 km downstream from A and 5 km inland. It costs $\$ 300 / \mathrm{m}$ to install fibre optics under the river and $\$ 200 / \mathrm{m}$ to install it on land. How far downstream from A should the cables be built?

Practice Problems: 4.5: \# 1, 2, 5, 6, 8-17, 19
\# 18, 20

## In Class Evidence

6. A box with an open top is to be constructed from a square piece of cardboard, 3 m wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume of such a box.
7. Find the point on the parabola $2 y=x^{2}$ that is closest to the point $(-4,1)$
8. A piece of wire 40 cm long is cut and bent into a square and a circle. How should the wire be cut to (a) maximize total enclosed area (b) minimize total enclosed area.
9. Find the largest possible volume of a cylinder inside a sphere of radius $r$.
