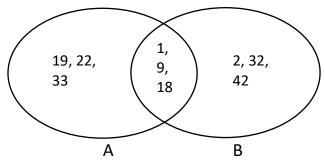

Function Composition: Domain and Range

Here are some vocabularies to know before we dive deep into domain and range of some composite functions:

Suppose there are two sets of numbers, set A and B:

Subset $(A \subset B)$: A set of numbers that are contained in a larger set.

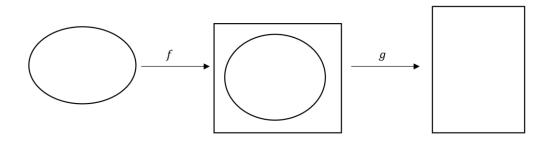


Intersection of sets $(A \cap B)$: The intersection of two sets contains **only** the elements that are in **both** sets. –

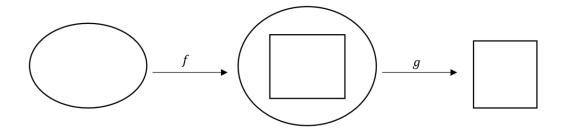
19, 22, 1, 9, 2, 32, 42

A B

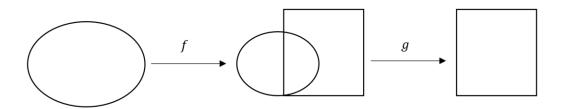
Union of sets $(A \cup B)$: The union of two sets contains all the elements contained in **either** set (or **both** sets). – "or"


The big part that we need to **understand** this unit is how domain and range of individual function are changed when they combine (because they may not match perfectly in the middle).

Consider the functions:


$$f: A \rightarrow B$$
 and $g: C \rightarrow D$

Where $B \neq C$


Case 1: $B \subset C$ (*B* is a subset of *C*)

Case 2: $C \subset B$ (C is a subset of B)

Case 3: $B \cap C$ Neither B nor C is a subset of each other.

Questions:

1. If $f = \{(2,8), (4,17), (6,20), (11,23), (12,28)\}$ and $g = \{(8,30), (20,31), (17,24), (23,18), (28,34), (29,35), (42,53)\}$, determine domain and range of $g \circ f$:

2. If $f = \{(3,9), (4,11), (6,13), (10,15), (19,26)\}$ and $g = \{(9,14), (13,38), (26,37)\}$, determine domain and range of $g \circ f$:

3. If $g = \{(1,3), (2,7), (4,12), (6,19), (9,27)\}$ and $f = \{(3,31), (5,34), (11,13), (12,24), (27,36)\}$, determine domain and range of $f \circ g$:

Extra Practice:

1. If f(x) = 8x and $g(x) = \sqrt{x}$, determine domain and range of $g \circ f$:

2. If $f(x) = (x-2)^2$ and $g(x) = \sqrt{4-x}$, determine domain and range of $g \circ f$: