Function Composition: Domain and Range

Here are some vocabularies to know before we dive deep into domain and range of some composite functions:
Suppose there are two sets of numbers, set A and B :

Subset $(A \subset B)$: A set of numbers that are contained in a larger set.

Intersection of sets $(A \cap B)$: The intersection of two sets contains only the elements that are in both sets. -

A B
Union of sets $(A \cup B)$: The union of two sets contains all the elements contained in either set (or both sets). "or"

The big part that we need to understand this unit is how domain and range of individual function are changed when they combine（because they may not match perfectly in the middle）．
＊We want to find a domaine range that works for both f and g Consider the functions：

$$
f: A \rightarrow B \text { and } g: C \rightarrow D
$$

Where $B \neq C$
Case 1：$B \subset C$（ B is a subset of C ）Domain \rightarrow same；Rare \rightarrow change

Case 3：$B \cap C$ Neither B nor C is a subset of each other．Domain \rightarrow change，变ange \rightarrow change

Questions:

1. If $f=\{(2,8),(4,17),(6,20),(11,23),(12,28)\}$ and
$g=\{(8,30),(20,31),(17,24),(23,18),(28,34),(29,35),(42,53)\}$, determine domain and range of $g \circ f:$
2. If $f=\{(3,9),(4,11),(6,13),(10,15),(19,26)\}$ and $g=\{(9,14),(13,38),(26,37)\}$, determine domain and range of $g \circ f$:
3. If $g=\{(1,3),(2,7),(4,12),(6,19),(9,27)\}$ and $f=\{(3,31),(5,34),(11,13),(12,24),(27,36)\}$, determine domain and range of $f \circ g$:

Extra Practice:

1. If $f(x)=8 x$ and $g(x)=\sqrt{x}$, determine domain and range of $g \circ f:$ Case 2

2. If $f(x)=(x-2)^{2}$ and $g(x)=\sqrt{4-x}$, determine domain and range of $g \circ f$:Case 3

Desmos: https://www.desmos.com/calculator/dxaug0550a

