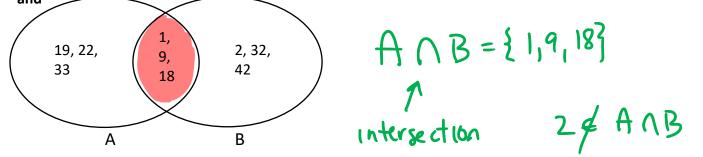
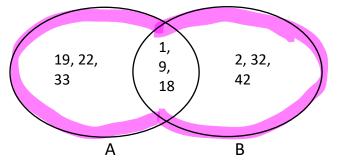
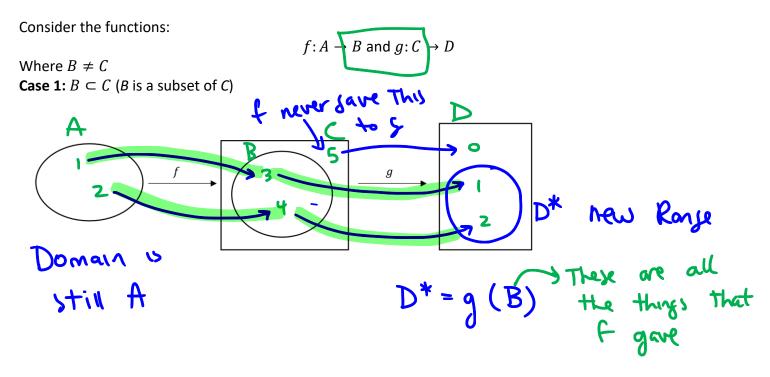
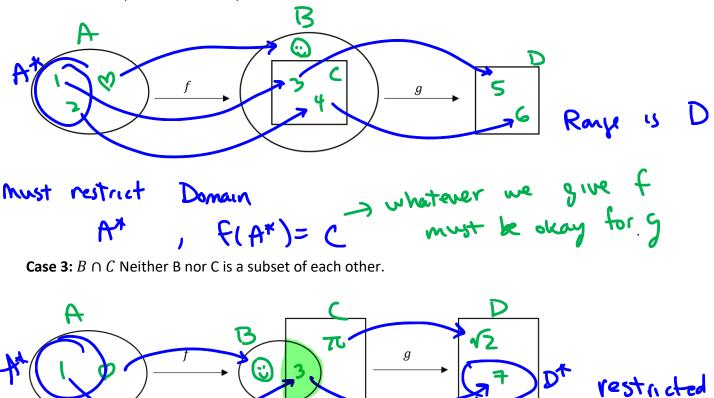

Function Composition: Domain and Range

Here are some vocabularies to know before we dive deep into domain and range of some composite functions:


Suppose there are two sets of numbers, set A and B:


Subset $(A \subset B)$: A set of numbers that are contained in a larger set.

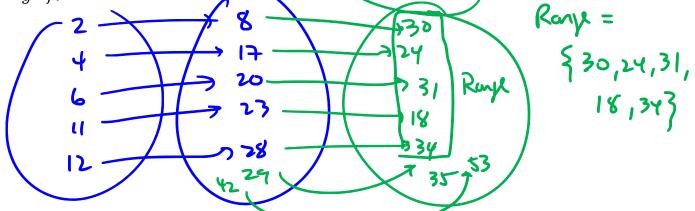

Intersection of sets $(A \cap B)$: The intersection of two sets contains **only** the elements that are in **both** sets. – "and"


Union of sets $(A \cup B)$: The union of two sets contains all the elements contained in **either** set (or **both** sets). – "or"

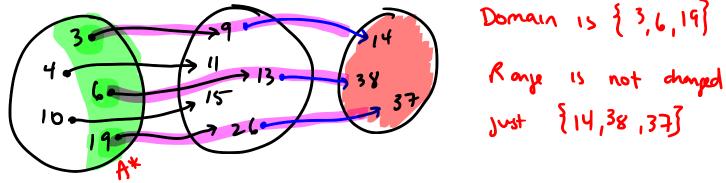
The big part that we need to **understand** this unit is how domain and range of individual function are changed when they combine (because they may not match perfectly in the middle).

Case 2: $C \subset B$ (*C* is a subset of *B*)

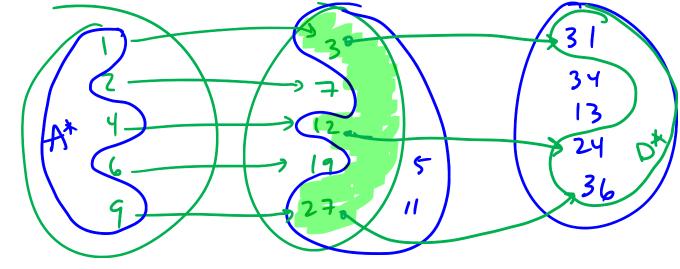
ronje



9(Bnc)=D*

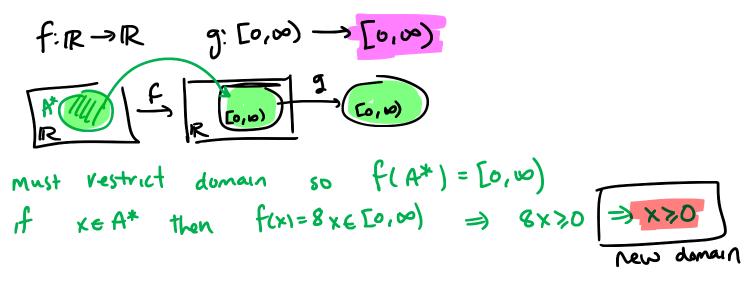

Unit 1: Functions

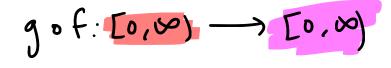
Questions:


1. If $f = \{(2,8), (4,17), (6,20), (11,23), (12,28)\}$ and $g = \{(8,30), (20,31), (17,24), (23,18), (28,34), (29,35), (42,53)\}$, determine domain and range of $g \circ f$:

2. If $f = \{(3, 9), (4, 11), (6, 13), (10, 15), (19, 26)\}$ and $g = \{(9, 14), (13, 38), (26, 37)\}$, determine domain and range of $g \circ f$:

3. If $g = \{(1, 3), (2, 7), (4, 12), (6, 19), (9, 27)\}$ and $f = \{(3, 31), (5, 34), (11, 13), (12, 24), (27, 36)\}$, determine domain and range of $f \circ g$:




Domain = 31, 4,93 Roye = {24,31,36]

Unit 1: Functions

Extra Practice:

1. If f(x) = 8x and $g(x) = \sqrt{x}$, determine domain and range of $g \circ f$:

q.f: [0,4] → [0,2

2. If
$$f(x) = (x - 2)^2$$
 and $g(x) = \sqrt{4 - x}$, determine domain and range of $g \circ f$:
 $f: \mathbb{R} \to [0, \infty)$
 $g: (-\infty, 4] \to [0, \infty)$
 $f(x) = [0, 4] \to [0, 4]$
 $f(x^*) = [0, 4] \to [0, 4]$
 $g(x^*) = [0, 4]$
 $g(x^*) = [0, 4] \to [0, 4]$
 $g(x^*) = [0, 4] \to [0, 4]$
 $g(x^*) = [0, 4]$
 $g(x^*) = [0, 4] \to [0, 4]$
 $g(x^*) = [0, 4]$
 $g(x^*) = [0, 4] \to [0, 4]$
 $g(x^*) = [0, 4]$
 $g(x^*) = [0, 4] \to [0, 4]$
 $g(x^*) = [0, 4] \to [0, 4]$
 $g(x^*) = [0, 4]$
 $g(x^*) = [0, 4] \to [0, 4]$
 $g(x^*) = [0, 4]$
 $g(x^*) =$