Function Review

KNOW	DO	UNDERSTAND
Be able to recognize a function vs	Use Desmos and Geogebra to	No Big Ideas, but understand that
relation.	graph functions.	a function is just a list of
Be able to identify the domain	Use correct language and notation	instructions that changes an input
from the range.	when describing functions and	into a new thing.
	sets.	
Vocab & Notation		

- Set: ℝ, ℚ, ℤ, ℕ
 Element: *x* ∈ *A*
- Mapping for sets: the function f from X to $Y \equiv f: X \rightarrow Y$
- Mapping for elements: the function f maps x to $y \equiv f: x \mapsto y$

Definition: A **set** is a collection of objects called **elements** that have a common property. Typically sets are collections of numbers, but they can be collections of anything really (even other sets!).

Example: The set of students in the front row and the set of months.

Some **very** commonly used sets are \mathbb{N} (the set of natural numbers), \mathbb{Z} (the set of integers), \mathbb{Q} (the set of rational numbers), and \mathbb{R} (the set of real numbers)

Definition: A mapping f, denoted as $f: A \rightarrow B$, is a relation between the set A and the set B. We say that $f: x \mapsto y$ or that f maps $x \in A$ to $y \in B$.

Example: Write the relation $y = x^2 - 1$ in mapping notation using the function g.

When we graph a function, we are illustrating this relation with the coordinate (x, y).

I want you to learn to be comfortable thinking about evaluating functions at abstract points. It can help to think of the function as an *action* that operates on an input x in a predictable way and transforms it into a new output f(x).

Example: Consider the function from before $g(x) = x^2 - 1$, determine $g(\pi)$, $g(\sqrt{2})$, $g(\beta)$ and $g(x^2 - 1)$

Practice: Write the relation in mapping notation as a function F. State that the domain is all positive numbers and the range is all positive numbers less than 1.

$$y = \frac{x}{1+x}$$

Determine
$$F(2)$$
, $F\left(\frac{4}{3}\right)$, $F(-3)$, $F(\pi)$, $F(\alpha)$, $F\left(\frac{x}{1+x}\right)$