Function Review
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { KNOW } \\
\text { Be able to recognize a function vs } \\
\text { relation. } & \begin{array}{l}\text { DO } \\
\text { Use Desmos and Geogebra to } \\
\text { graph functions. } \\
\text { from the range. }\end{array} & \begin{array}{l}\text { UNDERSTAND } \\
\text { No Big Ideas, but understand that } \\
\text { a function is just a list of }\end{array} \\
\text { Use correct language and notation } \\
\text { when describing functions and } \\
\text { sets. }\end{array}
$$ \quad \begin{array}{l}instructions that changes an input \\

into a new thing.\end{array}\right]\)| Vocab \& Notation |
| :--- |
| - Set: $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ |
| - Element: $x \in A$ |
| - Mapping for sets: the function f from X to $Y \equiv f: X \rightarrow Y$ |
| - Mapping for elements: the function f maps x to $y \equiv f: x \mapsto y$ |

Definition: A set is a collection of objects called elements that have a common property. Typically sets are collections of numbers, but they can be collections of anything really (even other sets!).

Example: The set of students in the front row and the set of months. such that

$$
F=\{\text { Melvin, Paul, coarsen }\} \text { or } F=\{x \mid x \text { is a student in }\}
$$

Zahlen
Some very commonly used sets are \mathbb{N} (the set of natural numbers), \mathbb{Z} (the set of integers), \mathbb{Q} (the set of rational numbers), and \mathbb{R} (the set of real numbers)
$1 \in \mathbb{N} \Rightarrow 1$ is a natural \#
$\sqrt{2} \notin \mathbb{Z} \Rightarrow \sqrt{2}$ is NOT an integer

$$
N=\{1,2,3, \ldots\}
$$

$$
\mathbb{Q}=\left\{x \left\lvert\, x=\frac{a}{b}\right., a, b \in \mathbb{Z}\right\} \quad \sqrt{2} \in \mathbb{R}, \quad \pi \in \mathbb{R} \quad \sqrt{F} \notin \mathbb{R}
$$

Definition: A mapping f, denoted as $f: A \rightarrow B$, is a relation between the set A and the set B. We say that $f: x \mapsto y$ or that f maps $x \in A$ to $y \in B$.

b Range

Example: Write the relation $y=x^{2}-1$ in mapping notation using the function g.

$$
\begin{aligned}
& g: \mathbb{R} \rightarrow Y \\
& Y=\{y \mid y \geqslant-1\} \text { or } Y=[-1, \infty)^{\text {co }} \\
& g: x \mapsto x^{2}-1
\end{aligned}
$$

When we graph a function, we are illustrating this relation with the coordinate (x, y).

I want you to learn to be comfortable thinking about evaluating functions at abstract points. It can help to think of the function as an action that operates on an input x in a predictable way and transforms it into a new output $f(x)$.

come from \mathbb{R}

$$
g(x)=x^{2}-1 \equiv g: x \mapsto x^{2}-1
$$

Example: Consider the function from before $g(x)=x^{2}-1$, determine $g(\pi), g(\sqrt{2}), g(\beta)$ and $g\left(x^{2}-1\right)$

$$
\begin{aligned}
& g(\pi)=\pi^{2}-1 \\
& g(\sqrt{2})=1 \\
& g(\beta)=\beta^{2}-1 \\
& g\left(x^{2}-1\right)=x^{4}-2 x^{2}
\end{aligned}
$$

$$
g: \pi \mapsto \pi^{2}-1
$$

$$
g: \sqrt{2} \mapsto \sqrt{2}^{2}-1=1
$$

$$
g: \beta \rightarrow \beta^{2}-1
$$

$$
g: x^{2}-1 \mapsto\left(x^{2}-1\right)^{2}-1
$$

Practice: Write the relation in mapping notation as a function F. State that the domain is all positive numbers and the range is all positive numbers less than 1.

$$
y=\frac{x}{1+x}
$$

$$
\begin{aligned}
& F:(0, \infty) \rightarrow(0,1) \\
& F: x \mapsto \frac{x}{1+x}
\end{aligned}
$$

$$
\text { OR } \quad F:\{x \mid x>0\} \rightarrow\{y \mid 0<y<1\}
$$

Determine $F(2), F\left(\frac{4}{3}\right), F(-3), F(\pi), F(\alpha), F\left(\frac{x}{1+x}\right)$

$$
\begin{array}{ll}
F(2)=\frac{2}{3} & 2 \mapsto \frac{2}{1+2}=\frac{2}{3} \\
F(4 / 3)=\frac{4}{7} & 4 / 3 \mapsto \frac{4 / 3}{1+4 / 3}=\frac{4}{7} \\
F(-3)=\text { undefined } & -3 \notin(0, \infty) \\
F(\pi)=\frac{\pi}{1+\pi} & \pi \mapsto \frac{\pi}{1+\pi} \\
F(\alpha)=\frac{\alpha}{1+\alpha} & \alpha \mapsto \frac{\alpha}{1+\alpha} \\
F\left(\frac{x}{1+x}\right)=\frac{x}{1+2 x} & \frac{x}{1+x} \mapsto \frac{\frac{x}{1+x}}{1+\frac{x}{1+x}}=\frac{\frac{x}{1+x}}{\frac{1+2 x}{1+x}}
\end{array}
$$

