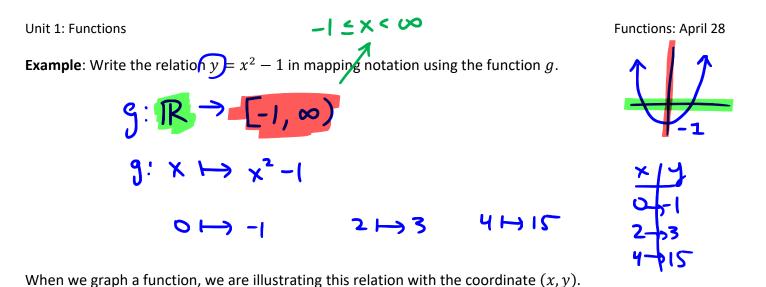
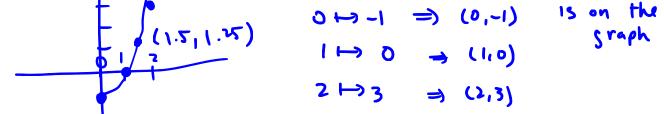
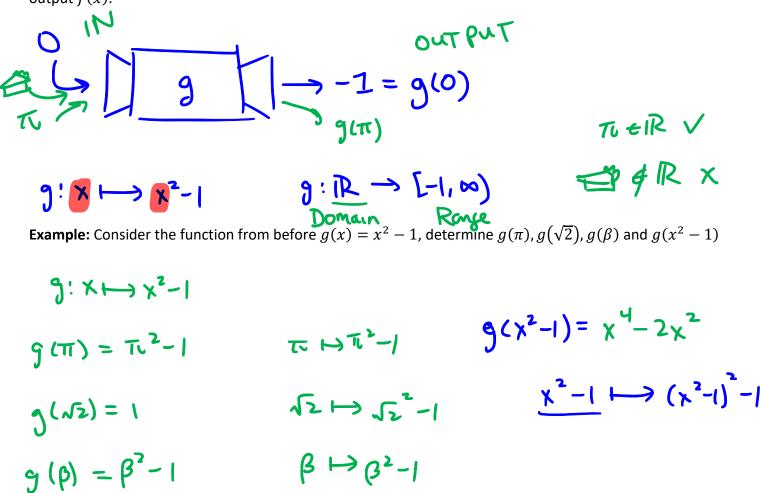

Function Review


KNOW	DO	UNDERSTAND
Be able to recognize a function vs relation.	Use Desmos and Geogebra to graph functions.	No Big Ideas, but understand that a function is just a list of
Be able to identify the domain	Use correct language and notation	instructions that changes an input
from the range.	when describing functions and	into a new thing.
	sets.	
Vocab & Notation		
 Set: ℝ, ℚ, ℤ, Ν 		


- Element: $x \in A$
- Mapping for sets: the function f from X to $Y \equiv f: X \to Y$
- Mapping for elements: the function f maps x to $y \equiv f: x \mapsto y$

Definition: A **set** is a collection of objects called **elements** that have a common property. Typically sets are collections of numbers, but they can be collections of anything really (even other sets!).


Example: The set of students in the front row and the set of months.

I want you to learn to be comfortable thinking about evaluating functions at abstract points. It can help to think of the function as an *action* that operates on an input x in a predictable way and transforms it into a new output f(x).

$$D = \{x | x > 0\}$$
 $R = \{y | o < y < l\}$
Functions: April 28

Unit 1: Functions

Practice: Write the relation in mapping notation as a function F. State that the domain is all positive numbers and the range is all positive numbers less than 1.

$$y = \frac{x}{1+x} \qquad (0, \infty)$$

$$F: (0, \infty) \longrightarrow (0, 1) \qquad 0 < x < \infty$$

$$F: D \rightarrow R$$

$$F: x \mapsto \frac{x}{1+x}$$

Determine
$$F(2)$$
, $F\left(\frac{4}{3}\right)$, $F(-3)$, $F(\pi)$, $F(\alpha)$, $F\left(\frac{x}{1+x}\right)$

F(4/2) - 4	$4_{13} \mapsto \frac{4_{13}}{(\tau 4_{13})} = \frac{4}{7}$
$F(\frac{4}{3}) = \frac{4}{7}$	13 (+4/3 7

$$F(2) = \frac{2}{3}$$

$$F(\pi) = \frac{\pi}{l_{+\pi}}$$

$$F(\alpha) = \frac{\alpha}{1+\alpha}$$

$$F(\frac{x}{1+\gamma}) = \frac{x}{1+2\gamma}$$

$$2 \mapsto \frac{2}{1+2} = \frac{2}{3}$$

$$\frac{\chi}{l+\chi} \longmapsto \frac{\frac{\chi}{l+\chi}}{l+\chi} = \frac{\left(\frac{\chi}{l+\chi}\right)}{\left(\frac{l+2\chi}{l+\chi}\right)}$$