Function Expansions and Reflections

KNOW	DO	UNDERSTAND			
Be able identify when	Use Desmos and Geogebra to	Transformations:			
a function was	graph expansions and reflections.	Can explain why horizontal			
compressed,	Use correct mapping and function	expansions/compressions are opposite in			
expanded, or	notation to describe an expansion.	function form.			
reflected (vertically	Graph an expansion accurately by	Can explain why and how domain and range			
or horizontally)	hand.	change with an expansion/compression.			
based on the	Determine the expansion based	Can explain how the intercepts and asymptotes			
mapping or function	on how points have moved.	move or stay in place after an			
notation		expansion/compression.			
Vocab & Notation					
 Expansion 					
 Compression 					
Reflection					
Parity (Odd or Even)					
Invariant Point					

Aside from translating a function which preserves the general shape of the function (it just got moved around the graph) we can transform the graph in a more significant manner by stretching and compressing it relative to either axis.

Definition: When a transformation stretches 2D space horizontally and vertically this is called an **expansion** or **compression** and the mapping notation looks like:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$T: (x, y) \to (b \cdot x, a \cdot y)$$

For a **vertical stretch**, we expand or compress space up and down and we apply the transformation:

-4

For a **horizontal stretch**, we expand or compress space up and down and we apply the transformation: $T: \mathbb{R}^2 \to \mathbb{R}^2$

 $T{:}\,(x,y)\mapsto(bx,y)$

Definition: Under a transformation, *T*, if $T: (x_0, y_0) \mapsto (x_0, y_0)$ then the point (x_0, y_0) is **invariant**.

Definition: A **reflection** occurs when we transform a point from one side of the axis to the other.

Practice: Given the graph of *f* , complete the following table.

2	Words		
-4 -3 -2 -1 0 1 2 3	Mapping Notation	$T: \mathbb{R}^2 \to \mathbb{R}^2$ $T: (x, y) \mapsto \left(\frac{1}{2}x, y\right)$	
-1	Function Notation		g(x) = -4f(x)
	Domain		
-4	Range		
	Zeros		
	y-intercept		

Practice: Given the graph of f complete the following table

Words			
Mapping	$T: \mathbb{R}^2 \to \mathbb{R}^2$		
Notation	$T: (x, y) \mapsto (3x, y - 1)$		
Function		g(x) = 3f(-x) + 2	
Notation			
Horizontal			y = -2
Asymptote			
Range			<i>y</i> ∈ (−2, 2]
Zeros			x = -2, 0
y-intercept			y = 0