Function Expansions and Reflections

KNOW
Be able identify when
a function was
compressed,
expanded, or
reflected (vertically
or horizontally)
based on the
mapping or function

DO
Use Desmos and Geogebra to graph expansions and reflections. Use correct mapping and function notation to describe an expansion. Graph an expansion accurately by hand.
Determine the expansion based on how points have moved.

UNDERSTAND
Transformations:
Can explain why horizontal
expansions/compressions are opposite in function form.
Can explain why and how domain and range change with an expansion/compression.
Can explain how the intercepts and asymptotes move or stay in place after an expansion/compression.

Vocab \& Notation

- Expansion
- Compression
- Reflection
- Parity (Odd or Even)
- Invariant Point

Aside from translating a function which preserves the general shape of the function (it just got moved around the graph) we can transform the graph in a more significant manner by stretching and compressing it relative to either axis.

Definition: When a transformation stretches 2D space/horizontally and vertically this is called an expansion or compression and the mapping notation looks like:

$$
\begin{gathered}
\underset{X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}}{ }=(x, y) \rightarrow(b \cdot x, a \cdot y)
\end{gathered}
$$

For a vertical stretch, we expand or compress space up and down and we apply the transformation:

$$
\Rightarrow g(x)=2 f(x)
$$

For a horizontal stretch, we expand or compress space up and down and we apply the transformation:

$$
\rightarrow \quad \mid \quad 4 \quad \text { fix } \quad 4 \rightarrow y
$$

$2>1$ but this is a compression.

$$
g(x)=f(2 x)
$$

\& \mid a>1
we get vert. expansion $\&$ if $0<a<1$ we get compression
Example: $T:(x, y) \mapsto(x, 2 y)$

$$
\begin{aligned}
& T:(0,1) \mapsto(0,2) \\
& T:(1,2) \mapsto(1,4) \\
& T:(3,0) \mapsto(3,0)
\end{aligned}
$$ if $0<a<1$

et compression

$$
3+2
$$

$$
\begin{aligned}
& \text { vertically } \\
& \text { expand by } 2
\end{aligned}
$$

$$
\begin{gathered}
T:(1,2) \mapsto(\\
T:(3,0) \mapsto \\
\text { es space up and dow } \\
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
T:(x, y) \mapsto(\underbrace{b x, y)}
\end{gathered}
$$

$$
\begin{aligned}
& f: x \mapsto y \quad g: b x \mapsto y \\
& f(x)=y \quad g(b x)=y=f(x) \\
& \text { let } X=b x \\
& \Rightarrow g(X)=f\left(\frac{1}{b} X\right)
\end{aligned}
$$

$$
\begin{aligned}
& T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& T:(\underbrace{x, y)} \mapsto(x, a y) \\
& f: x \mapsto y \\
& f(x)=y \\
& g: x \mapsto a y \\
& g(x)=a y \\
& \Rightarrow g(x)=a \cdot f(x)
\end{aligned}
$$

Definition: A reflection occurs when we transform a point from one side of the axis to the other.
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ $(x, y) \mapsto(x,-y)$ $g(x)=-f(x)$
Even $f(-x)=f(x)$
either reflection

$$
\begin{aligned}
& (x, y) \mapsto(-x, y) \\
& g(x)=f\left(-\frac{x}{-1}\right)=f(-x)
\end{aligned}
$$

ODD $f(-x)=-f(x)$

Practice: Given the graph of f, complete the following table.

Practice: Given the graph of f complete the following table

Words			

Practice Problems: 1.2 page $28-31$ \# 3-8, 9, 10, 14, 15, C1, C2

