Function Translations

KNOW

Be able identify when a function was shifted left or right (and up or down) based on the mapping or function notation

DO

Use Desmos and Geogebra to graph translations.

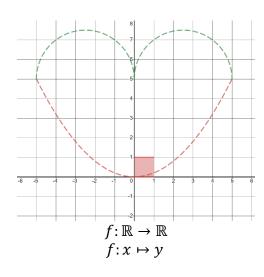
Use correct mapping and function notation to describe a translation. Graph a translation accurately by hand.

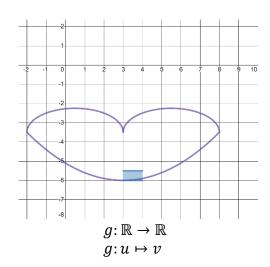
Determine the translation based on how points have moved.

UNDERSTAND

Transformations:

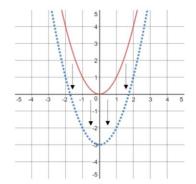
Can explain why translations left/right are opposite in function form.

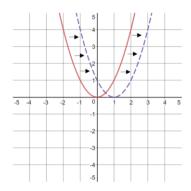

Can explain how vertical characteristics (range, y-intercepts, horizontal asymptotes) change by shifting up/down and how horizontal characteristics (domain, zeros and vertical asymptotes) change by shifting left/right


Vocab & Notation

- The plane of real numbers: \mathbb{R}^2
- Translation
- Function Characteristics

We are going to be looking at how we can transform 2D space and functions that occupy space using mapping.

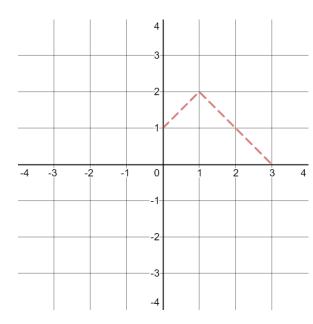

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$T: (x, y) \mapsto (u, v)$$



Definition: When a transformation moves 2D space horizontally and vertically this is called a **translation** and the mapping notation looks like:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

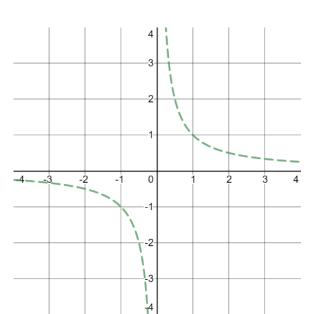
$$T: (x, y) \mapsto (x + c, y + d)$$



For a **vertical translation**, we shift space up and down and we apply the transformation: $T: \mathbb{R}^2 \to \mathbb{R}^2$

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T:(x,y)\mapsto (x,y+d)$$



Example: $T:(x,y) \mapsto (x,y-3)$

For a **horizontal translation**, we shift the function left and right and apply the transformation:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T:(x,y)\mapsto(x+c,y)$$

Example: $T:(x,y) \mapsto (x+2,y)$

Practice Problems: 1.1 page 12 – 15 # 1-11, 17-19, C1-C4

Composition Domain/Range Practice:

Given f(x) = 2|x| - 9 and $g(x) = \sqrt{1-x}$ determine the domain and range of $g \circ f$

Determine the domain and range of $f \circ g$