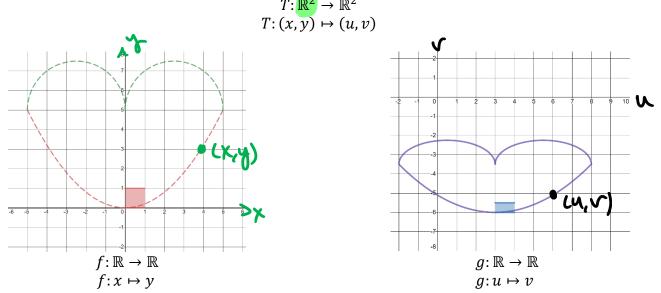
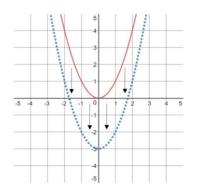
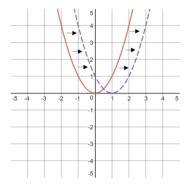

## **Function Translations**


| KNOW                  | DO                                  | UNDERSTAND                                       |
|-----------------------|-------------------------------------|--------------------------------------------------|
| Be able identify when | Use Desmos and Geogebra to          | Transformations:                                 |
| a function was        | graph translations.                 | Can explain why translations left/right are      |
| shifted left or right | Use correct mapping and function    | opposite in function form.                       |
| (and up or down)      | notation to describe a translation. | Can explain how vertical characteristics (range, |
| based on the          | Graph a translation accurately by   | y-intercepts, horizontal asymptotes) change by   |
| mapping or function   | hand.                               | shifting up/down and how horizontal              |
| notation              | Determine the translation based     | characteristics (domain, zeros and vertical      |
|                       | on how points have moved.           | asymptotes) change by shifting left/right        |

## **Vocab & Notation**

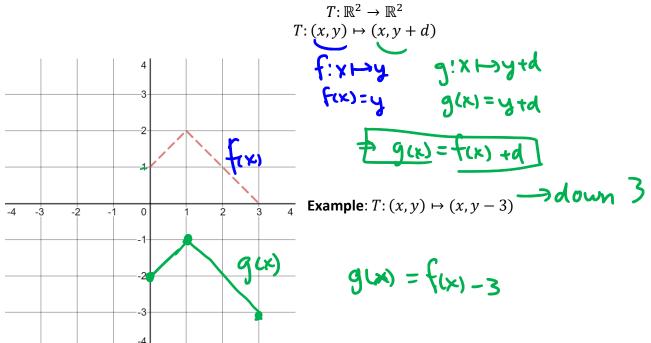
- The plane of real numbers:  $\mathbb{R}^2$
- Translation
- Function Characteristics





We are going to be looking at how we can transform 20 space and functions that occupy space using mapping.  $T: \mathbb{R}^2 \to \mathbb{R}^2$ 



**Definition:** When a transformation moves 2D space horizontally and vertically this is called a **translation** and the mapping notation looks like:


$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$T: (x, y) \mapsto (x + c, y + d)$$





Unit 1: Functions

For a **vertical translation**, we shift space up and down and we apply the transformation:



For a horizontal translation, we shift the function left and right and apply the transformation:



Practice Problems: 1.1 page 12 – 15 # 1-11, 17-19, C1-C4

Unit 1: Functions Function Translations: April 30 Composition Domain/Range Practice: Given f(x) = 2|x| - 9 and  $g(x) \neq \sqrt{1-x}$  determine the domain and range of  $g \circ f$ . F: IR -> [-1, 00)  $g: (-\infty, i] \longrightarrow [0, \infty)$ E-9,00 [0, w) (-00,1]  $(-\infty, 1] \Lambda [-9, \infty) = [-9, 1]$ take x E [-9,1] where is g(x)? A Ronge -95×51 9(x1=11-X ヨ 9ブーメブー =) NIO > NI-X >0 15 [0/10] =) Runje f x  $\in A^*$  then  $f(x) \in [-9, 1]$ Domain -9 < 21×1-9 < 1 -)  $0 \leq 2|\mathbf{x}| \leq |\mathbf{0}|$ Vin 0 5 1×155 =) -5 5 × 65 15 )omain