Function Translations

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { KNOW } & \text { DO } & \text { UNDERSTAND } \\
\text { Be able identify when } & \text { Use Desmos and Geogebra to } & \begin{array}{l}\text { Transformations: } \\
\text { a function was } \\
\text { shifted left or right } \\
\text { (and up or down) } \\
\text { based on the } \\
\text { mapping or function } \\
\text { notation }\end{array} \\
\begin{array}{l}\text { Use correct mapping and function }\end{array} & \begin{array}{l}\text { Can explain why translations left/right are } \\
\text { opposite in function form. }\end{array} \\
\text { notation to describe a translation. } \\
\text { Graph a translation accurately by } \\
\text { hand. } \\
\text { Determine the translation based } \\
\text { on how points have moved. }\end{array}
$$ \quad \begin{array}{l}y-intercepts, horizontal asymptotes) change by

shifting up/down and how horizontal

characteristics (domain, zeros and vertical

asymptotes) change by shifting left/right\end{array}\right]\)| Vocab \& Notation |
| :--- |
| - The plane of real numbers: \mathbb{R}^{2} |
| - Translation |
| - Function Characteristics |

We are going to be looking at how we can transform 2D space and functions that occupy space using mapping.

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$T:(x, y) \mapsto(u, v)$

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto y$

$g: \mathbb{R} \rightarrow \mathbb{R}$
$g: u \mapsto v$

Definition: When a transformation moves 2D space horizontally and vertically this is called a translation and the mapping notation looks like:

$$
\begin{gathered}
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
T:(x, y) \mapsto(x+c, y+d)
\end{gathered}
$$

For a vertical translation, we shift space up and down and we apply the transformation:

For a horizontal translation, we shift the function left and right and apply the transformation:

$$
\begin{aligned}
& T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \stackrel{r}{T \cdot(x, y) \mapsto(x+c, y)} \\
& f(x)=y \quad g(x+c)=y=f(x) \\
& \text { let } x+c=X \rightarrow g(X)=f(X-c) \\
& \text { Example: } T:(x, y) \mapsto(x+2, y) \quad \text { Rest two } \\
& g(A)=f(x-2) \rightarrow \text { looks like its }
\end{aligned}
$$

Practice Problems: 1.1 page 12 - 15 \# 1-11, 17-19, C1-C4

Given $f(x)=2|x|-9$ and $g(x)=\sqrt{1-x}$ determine the domain and range of $g \circ f$

$$
f: \mathbb{R} \rightarrow[-9, \infty) \quad g:(-\infty, 1] \rightarrow[0, \infty)
$$

* New Rage $[0, \sqrt{10}]$
p intersection is $[-9,1]$
\rightarrow Range take $x \in[-9,1] \rightarrow-9 \leq x \leq 1$

$$
\begin{array}{ll}
g(-9)=\sqrt{10} \quad g(1)=0 \quad \begin{array}{l}
9 \geqslant-x \geqslant-1 \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
10
\end{array} \geqslant 1-x \geqslant 0 \\
\sqrt{1-x} \geqslant 0
\end{array}
$$

* Domain take $x \in \mathbb{R}$ Note $f(x) \in[-9,1]$

$$
\begin{aligned}
& \Rightarrow \quad-9 \leq f(x) \leq 1 \\
& -9 \leq 2|x|-9 \leq 1 \\
& 0 \leq 2|x| \leq 10 \\
& \text { Now Domain } \\
& 0 \leq|x| \leq 5 \Rightarrow-5 \leq x \leq 5 \\
& g \circ f:[-5,5] \rightarrow[0, \sqrt{10}]
\end{aligned}
$$

