Function Translations

KNOW	DO	UNDERSTAND
Be able identify when	Use Desmos and Geogebra to	Transformations:
a function was	graph translations.	Can explain why translations left/right are
shifted left or right	Use correct mapping and function	opposite in function form.
(and up or down)	notation to describe a translation.	Can explain how vertical characteristics (range,
based on the	Graph a translation accurately by	y-intercepts, horizontal asymptotes) change by
mapping or function	hand.	shifting up/down and how horizontal
notation	Determine the translation based	characteristics (domain, zeros and vertical
	on how points have moved.	asymptotes) change by shifting left/right
Vocab & Notation		

- The plane of real numbers: \mathbb{R}^2
- Translation
- Function Characteristics

We are going to be looking at how we can transform 2D space and functions that occupy space using mapping.

Definition: When a transformation moves 2D space horizontally and vertically this is called a **translation** and the mapping notation looks like:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$T: (x, y) \mapsto (x + c, y + d)$$

Unit 1: Functions

For a vertical translation, we shift space up and down and we apply the transformation:

For a horizontal translation, we shift the function left and right and apply the transformation:

Unit 1: Functions

Composition Domain/Range Practice: ,

Given f(x) = 2|x| - 9 and $g(x) = \sqrt{1-x}$ determine the domain and range of $g \circ f$

Berenethedemain and renge of the

★ Domain take $x \in \mathbb{R}$ Note $f(x) \in [-9, 1]$ =) $-9 \leq f(x) \leq 1$ $-9 \leq 2|x| - 9 \leq 1$ $0 \leq 2|x| \leq 10$ $0 \leq |x| \leq 5$ => $-5 \leq x \leq 5$

