Fundamental Theorem Practice Solutions

Evaluate the following functions defined using the given the graph f at the indicated points. Find the x value where it has an extreme value and an inflection point.
1.

$$
F(x)=\int_{-4}^{x} f(t) d t
$$

x	-4	0	4	8
$F(x)$	0	$-\frac{1}{2} \pi$	$-\frac{1}{2} \pi+4$	$-\frac{1}{2} \pi+10$

Maximums of F	Minimums of F	Inflection Points of F
No pure local max $\left(F^{\prime}(x)=\right.$	Local min at $x=0(f(x)$ goes	$F^{\prime \prime}=f^{\prime}$ and the slope changes
$f(x)$ never goes positive to	negative to positive $)$ and this is	sign at $x=-1$ and at $x=2$
negative $)$	the absolute min too.	
Absolute max at $x=4$		

2.

$$
g(x)=\int_{-3}^{x} f(t) d t
$$

x	-3	-1	1	5
$g(x)$	0	$-\pi$	$-\pi$	$-\pi+1$

Maximums of g	Minimums of g	Inflection Points of g
Local when $x=3\left(g^{\prime}(x)\right.$ goes positive to negative	Local when $x=0\left(g^{\prime}(x)\right.$ goes negative to positive $)$	$g^{\prime \prime}(x)=f^{\prime}(x)$ and the slope changes sign at We can see that $g(3)>g(5)$ but $g(3)=-\pi+2<0$ so $g(-3)$ will be the absolute max
This is also the absolute since $g(0)=-\pi-1<g(-3), g(5)$		

3.

$$
h(x)=\int_{-4}^{x} f(t) d t
$$

x	-4	-2	0	3	6
$h(x)$	0	4	6	9	6

Maximums of h	Minimums of h	Inflection Points of h
Local max at $x=3$ where $h^{\prime}(x)=f(x)$ goes positive to negative.	No pure local minimum so we never go from negative to positive.	We have $h^{\prime \prime}=f^{\prime}$ and the slope changes sign at $x=0,2$, and 4 Since $h(3)>0$ and $h(3)>h(6)$, we have our absolute max at $x=3$ too
The absolute min will be the lowest endpoint which is $h(-3)$		

4.

$$
k(x)=\int_{-3}^{x} f(t) d t
$$

x	-3	1	2	3	5
$k(x)$	0	$8-2 \pi$	$6.5-2 \pi$	$8-2 \pi$	$6-2 \pi$

Maximums of k	Minimums of k	Inflection Points of k
Local max at $x=1$ and 3 where	Local min at $x=2$ where $k^{\prime}=$	When does $k^{\prime \prime}=f^{\prime}$ change
$k^{\prime}(x)=f(x)$ goes positive to	f goes from negative to negative.	sositive.
Since $k(1)=k(3)>k(5)$ and $x=-1$ and $x=3$		
0 we have our absolute max is $k(2)>0>k(5)$ so	Notice that there is an inflection point at a local (he absolute min is at $x=5$ maximum. shared at $x=1$ and 3	

