Fundamental Theorem Practice Solutions

Evaluate the following functions defined using the given the graph f at the indicated points. Find the x value where it has an extreme value and an inflection point.

$$F(x) = \int_{-4}^{x} f(t) dt$$

x	-4	0	4	8
F(x)	0	$-\frac{1}{2}\pi$	$-\frac{1}{2}\pi + 4$	$-\frac{1}{2}\pi + 10$

Maximums of F	Minimums of F	Inflection Points of F
No pure local max $(F'(x) =$	Local min at $x = 0$ ($f(x)$ goes	F'' = f' and the slope changes
f(x) never goes positive to negative)	negative to positive) and this is the absolute min too.	sign at $x = -1$ and at $x = 2$
Absolute max at $x = 4$		

$$g(x) = \int_{-3}^{x} f(t)dt$$

x	-3	-1	1	5
g(x)	0	$-\pi$	$-\pi$	$-\pi + 1$

Maximums of g	Minimums of g	Inflection Points of g
Local when $x = 3$ ($g'(x)$ goes	Local when $x = 0$ ($g'(x)$ goes	g''(x) = f'(x) and the slope
positive to negative	negative to positive)	changes sign at
		x = -1, 1, and 4
We can see that $g(3) > g(5)$	This is also the absolute since	
but $g(3) = -\pi + 2 < 0$ so	$g(0) = -\pi - 1 < g(-3), g(5)$	
g(-3) will be the absolute max		

$$h(x) = \int_{-4}^{x} f(t) dt$$

x	-4	-2	0	3	6
h(x)	0	4	6	9	6

Maximums of h	Minimums of <i>h</i>	Inflection Points of <i>h</i>
Local max at $x = 3$ where h'(x) = f(x) goes positive to negative.	No pure local minimum so we never go from negative to positive.	We have $h'' = f'$ and the slope changes sign at $x = 0, 2$, and 4
Since $h(3) > 0$ and $h(3) > h(6)$, we have our absolute max at x = 3 too	The absolute min will be the lowest endpoint which is $h(-3)$	

$$k(x) = \int_{-3}^{x} f(t)dt$$

x	-3	1	2	3	5
k(x)	0	$8-2\pi$	$6.5 - 2\pi$	$8-2\pi$	$6 - 2\pi$

Maximums of k	Minimums of k	Inflection Points of k
Local max at $x = 1$ and 3 where	Local min at $x = 2$ where $k' =$	When does $k'' = f'$ change
k'(x) = f(x) goes positive to	f goes from negative to	sign? At $x = -1$ and $x = 3$
negative.	positive.	
		Notice that there is an
Since $k(1) = k(3) > k(5)$ and	We have $k(2) > 0 > k(5)$ so	inflection point at a local
0 we have our absolute max is	the absolute min is at $x = 5$	maximum.
shared at $x = 1$ and 3		

