Geometric Sequences and Series
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { KNOW } \\
\text { How to identify a sequence as } \\
\text { geometric. }\end{array}
$$ \quad $$
\begin{array}{l}\text { DO } \\
\text { Build the equation for a geometric } \\
\text { sequence and determine the sum of a } \\
\text { geometric series }\end{array}
$$ \quad \begin{array}{l}UNDERSTAND \\

None yet\end{array}\right]\)| Vocab \& Notation |
| :--- |
| \quad Common ratio |

Definition: A geometric sequence is a sequence generated by multiplying the previous term by a fixed value.

$$
\frac{\text { Pexevous }}{a_{k+1}}=\frac{a_{k} \cdot r}{a_{k}}, r \in \mathbb{R} \quad r \neq 0
$$

Definition: The common ratio is the ratio of consecutive terms in a geometric sequence.
\qquad

Let's look and see how a geometric sequence is built by letting $a_{1}=A$ true for all $k \in \mathbb{N}$

$$
\text { A) } \frac{a_{k+1}}{a_{k}}=r
$$

$$
a_{1}=2 \quad \frac{6}{2}=3=\frac{18}{6}=3=r
$$

$$
\left(2 \cdot 3^{k-1}\right)_{k=1}^{\infty}=\left(2 \cdot 3^{k}\right)_{k=0}^{\infty}
$$

$$
\left(\frac{8}{9}, \frac{2}{9} \cdot \frac{1}{18}, \cdots\right) \quad\left(-9,-25,-\frac{625}{9}, \cdots\right)
$$

$$
\begin{aligned}
a_{1}=8 / 9 \quad r & =\frac{1}{4} \\
\left(\frac{8}{9} \cdot\left(\frac{1}{4}\right)^{k-1}\right)_{k=1}^{\infty} & =\left(\frac{8}{9 \cdot 4^{k-1}}\right)_{x=1}^{\infty} \\
& =\left(\frac{8}{9 \cdot 4^{k}}\right)_{k=0}^{\infty}
\end{aligned}
$$

$$
a_{k+1}=a_{n} \cdot r \Rightarrow \text { ANS }=\text { ANS }-r \text { Geom }
$$

** We can use our calculator to list the terms of a geometric sequence quickly using recursion.
Example: List the first 10 terms of the sequence where $a_{1}=10$ and $r=-\frac{4}{5}$

$$
\begin{aligned}
& (10,-8,64,-5.12,4.096,-3.2768,2.62 \ldots,-2.097,1.67 \ldots) \\
& \text { ANS }=10 \quad \text { Ans } \times(-4 / 5)=\text { ANS }
\end{aligned}
$$

Practice: List the first 10 terms of the sequence where $a_{1}=4$ and $r=1.06$

Newtons Method.
Now we would like to consider the geometric series, that is cert $^{+}$
n terms

$$
\longleftarrow\left[S_{n}=\sum_{k=1}^{n} a_{1} r_{k}^{k-1}\right. \text { Common ratio }
$$

Oftentimes it is helpful to try and add or subtract copies of the summation to reduce it to something simpler.

$$
\begin{aligned}
S_{n} & =a_{1}+\left(a_{1} r+a_{1} r^{2}+\cdots+a_{1} r^{n-1}\right) \\
-r S_{n} & =\left(a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots+a_{1} r^{n-1}\right)+a_{1} r^{n} \\
(1-r) S_{n} & =a_{1}-a_{1} r^{n} \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right.}{1-r}
\end{aligned}
$$ end point

Example: Determine the following sums

$$
S=\sum_{k=1}^{10} 4 \cdot 3^{k-1}
$$

$$
S=\sum_{k=0}^{5} 3 \cdot\left(\frac{1}{2}\right)^{k}
$$

first term $=4$
first term $=3$
$\#$ of terms $=10$ terms
\# of terms $=6$
5.90625

$$
r=3 \gg 101 G
$$

$$
r=\frac{1}{2} \quad<1
$$

$$
S=\frac{3\left(1-(1 / 2)^{b}\right)}{1-1 / 2} J_{\text {small }}
$$

Practice: Determine the following sums

$$
\begin{array}{ll}
r=-3 / 3 & \left.a_{1}=1 \sum_{k=0}^{\sum_{k=1}^{7} 8 \cdot\left(-\frac{2}{3}\right)^{k-1}}{ }^{k}\right)^{k} \\
\left.S=\frac{8\left(1+(2 / 3)^{7}\right)}{1+2 / 3}\right)_{s \text { small }}^{7} & S=\frac{1-(9 / 4)_{3}^{7}}{1-9 / 4} \text { Big }
\end{array}
$$

Since we know the finite sum, we can consider what S_{∞} would be:
fist ten

$$
*|r|<1
$$

$$
\frac{a_{1}}{\frac{a_{k}}{1-r_{\text {commor }}^{\text {ratio }}}=S_{\infty}}=\frac{a_{1}(1-0)}{1-r} \quad \text { so small its } 0
$$

Example: Determine the following sums ratio

$$
\begin{array}{ll}
S=\sum_{k=1}^{\infty} 10 \cdot\left(-\frac{2}{5}\right)^{k-1} & \sum_{k=0}^{\infty} 7 \cdot\left(-\frac{3}{4}\right)^{k} \\
\text { first }=10 \Rightarrow S=\frac{10}{1+2 / 5}=\frac{50}{7} & \text { first }=7 \quad r=-3 / y \\
r=-2 / 5 \Rightarrow & S=\frac{7}{1+3 / 4}=4 \\
\sum_{k=2}^{\infty} 100 \cdot\left(\frac{1}{2}\right)^{k} & \infty=\sum_{k=0}^{\infty} 12 \cdot(1.01)^{k} \quad \text { first } 12 \\
\text { first }=25 \quad r=1 / 2 & r>1
\end{array} \quad r=1.01
$$

Practice Problems: Handout sections III, V(c,d)
Ryerson pdf: 1.3 \# 1-7, 23
1.4 \# 1-8, 16=19
1.5 \# 1-7, 20

