Graphing Sine and Cosine

KNOW	DO	UNDERSTAND
How to identify the	Can graph a trig function	Transformation:
amplitude and period	from the equation or	Can explain how certain characteristics are or are
of a trig function.	characteristics accurately.	not affected by a transformation.
What a sinusoidal	Can build the equation of a	Function Characteristics:
function looks like.	trig function from the graph	How the amplitude relates to the max/min values,
	or characteristics accurately.	midline as the average, period as the frequency,
		and shift as the start.
Vocab & Notation		
Amplitude		Phase Shift
 Period 		Sinusoidal function
1		

Midline

Using a unit circle, graph the angle θ and the values of $\sin \theta$ and $\cos \theta$.

Definition: Functions that repeat after a certain amount of time are called **periodic functions** (periodic meaning occurring at regular intervals). Periodic functions that have this regular "wave" shape are called **sinusoidal functions**.

We want to analyze this curve so that we can graph functions of the form:

$$a \cdot \sin(b(x-c)) + d$$

Definition: The **amplitude** is the distance from the midline to the maximum or minimum, or equivalently, half the distance between the max and min.

Definition: The **period** is the length of one complete cycle of a periodic function. Not necessarily how long it takes to repeat itself, but how long it takes to repeat the pattern.

Definition: The **phase shift** is where the starting point of $\theta = 0$ got moved to.

When transforming a new function, we need to understand the basic function well to start.

Unit 3: Trigonometry

Example: Graph $f(\theta) = 3\sin\left(\frac{1}{2}\left(\theta - \frac{\pi}{4}\right)\right) + 1$

- Identify the midline from the vertical displacement
- Use the amplitude to find the max and min lines
- Use the phase shift to identify the starting point
- Split the period into quarters.

Example: Determine 3 different equations that could describe the following function.

Unit 3: Trigonometry

Graphing Sine and Cosine: March 4

Example: Determine two equations (one sine, one cosine) that could describe a sinusoidal function that has two minimums at (-1, -3) and (3, -3) and has an amplitude of 0.5.

Trig Graphs

