Graphing Sine and Cosine

| KNOW |
| :--- | :--- | :--- |
| How to identify the |
| amplitude and period |
| of a trig function. |
| What a sinusoidal |
| function looks like. |\quad| DO |
| :--- |
| Can graph a trig function |
| from the equation or |
| characteristics accurately. |
| Can build the equation of a |
| trig function from the graph |
| or characteristics accurately. |\quad| UNDERSTAND |
| :--- |
| Transformation: |
| Can explain how certain characteristics are or are |
| not affected by a transformation. |
| Function Characteristics: |
| How the amplitude relates to the max/min values, |
| midline as the average, period as the frequency, |
| and shift as the start. |

Using a unit circle, graph the angle θ and the values of $\sin \theta$ and $\cos \theta$.

θ	$0^{3 \pi} \frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π	
$\cos \theta$	1	0	-1	0	1
$\sin \theta$	0	1	0	-1	0

Definition: Functions that repeat after a certain amount of time are called periodic functions (periodic meaning occurring at regular intervals). Periodic functions that have this regular "wave" shape are called sinusoidal functions.

We want to analyze this curve so that we can graph functions of the form:

Definition: The amplitude is the distance from the midline to the maximum or minimum, or equivalently, half the distance between the max and min.
for $\sin \theta$ amplitude is 7
vertical stretch $|a|$ amplitude is >0
Definition: The period is the length of one complete cycle of a periodic function. Not necessarily how long it takes to repeat itself, but how long it takes to repeat the pattern.
for $\sin \theta \quad \operatorname{percod}=T=2 \pi$ * charge with horiz. stretch

$$
T_{\text {Definition: The phase shift is where the starting point of } \theta=0}\left(1 \text { rotation moved to. } \quad, \quad T=\frac{2 \pi}{b}\right.
$$

Definition: The phase shift is where the starting point of $\theta=0$ got moved to.
$\sin \theta$ starts on midline $C(0,0)$ shift/left right $\cos \theta$ stats @ max $(0,1)$ changes start pant.

When transforming a new function, we need to understand the basic function well to start.

$$
\cos (-\theta)=\cos \theta
$$

$$
\sin (-\theta)=-\sin \theta
$$

* cosine is even

$$
(-x)^{2}=x^{2}
$$

$$
(-x)^{3}=-x^{3}
$$

Unit 3: Trigonometry
Example: Graph $f(\theta)=\beta \sin \left(\frac{1}{2}\left(\theta-\frac{\pi}{4}\right)\right)+1$

- Identify the midline from the vertical displacement
- Use the amplitude to find the max and min lines
- Use the phase shift to identify the starting point
- Split the period into quarters.

Example: Determine 3 different equations that could describe the following function.

Example: Determine two equations (one sine, one cosine) that could describe a sinusoidal function that has two minimums at $(-1,-3)$ and $(3,-3)$ and has an amplitude of 0.5 .

Practice Problems: 5.1 page 233-236 \# 1-12, 20-22
5.2 page $250-254$ \# 1-7, 10-19

Trig Graphs

