Area Under a Curve Part 1

Goal:

• Can define the area under any curve using a Riemann Sum and limit.

Terminology:

Riemann Sum

Discussion question: Why is the area of a circle πr^2

Let's use this idea with an arbitrary shape.

I have built a calculator for you to partition a region into *n* subintervals https://www.desmos.com/calculator/t17czhwjyl

Example: Approximate the area under the parabola $f(x) = 4 - x^2$ on the interval [-2, 2] using 4 subintervals (n = 4).

Practice: Determine the area under the curve $f(x) = -x^3 + 2x^2$ on the interval [-1, 2] using 6 subintervals

Practice Problems: 10.4 # 1, 3&4 (write the area as a limit $n \rightarrow \infty$ and approximate using n = 4, use the calculator to determine the area to 1 or 2 decimals of accuracy)

