Area Under a Curve Part 1

Goal:

- Can define the area under any curve using a Riemann Sum and limit. Terminology:
- Riemann Sum

Discussion question: Why is the area of a circle πr^{2}

Let's use this idea with an arbitrary shape.

I have built a calculator for you to partition a region into n subintervals
https://www.desmos.com/calculator/t17czhwjyl
Example: Approximate the area under the parabola $f(x)=4-x^{2}$ on the interval $[-2,2]$ using 4 subintervals ($n=4$).

Practice: Determine the area under the curve $f(x)=-x^{3}+2 x^{2}$ on the interval $[-1,2]$ using 6 subintervals

Practice Problems: $10.4 \# 1,3 \& 4$ (write the area as a limit $n \rightarrow \infty$ and approximate using $n=4$, use the calculator to determine the area to 1 or 2 decimals of accuracy)
\# 6

