Area Under a Curve Part 1

Goal:

- Can define the area under any curve using a Riemann Sum and limit.

Terminology:

- Riemann Sum

Discussion question: Why is the area of a circle πr^{2}
We can cut the circle into thin circular strips. If the strips are thin enough, we
can bend them into the shape of a line (like as thin as a wire).
Once the strips are laid out on top of each other they will make a triangle
with height R and the base will be the circumference $2 \pi R$
We can then determine the area of the circle as
$A=\frac{R \cdot 2 \pi R}{2}=\pi R^{2}$

Let's use this idea with an arbitrary shape.

If we were to approximate the area we might say the area is around 3 since the blob shape could be flattened to have a height of 1 and the base is pushed in to a width of 3 . But to say more than that is difficult.

What we could do is cut the region into n rectangles so that each rectangle has width $\Delta x=\frac{b-a}{n}$. Then we have a choice of how tall we want the rectangles to be.

Pick some point $c_{k} \in\left[x_{k-1}, x_{k}\right]$ and then the height will be $f\left(c_{k}\right)$. Since it doesn't matter really where c_{k} is (as we want the rectangles to become very thin) we are going to pick the right end-point, x_{k}. Therefore the area of each rectangle is

$$
f\left(x_{k}\right) \cdot \frac{b-a}{n}
$$

And the sum of every rectangle is

$$
\sum_{k=1}^{n} f\left(x_{k}\right) \cdot \Delta x=\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right) \Delta x
$$

Note that $x_{k}=a+k \cdot \Delta x$

I have built a calculator for you to partition a region into n subintervals

https://www.desmos.com/calculator/t17czhwjyl

Example: Approximate the area under the parabola $f(x)=4-x^{2}$ on the interval $[-2,2]$ using 4 subintervals ($n=4$).

Practice: Determine the area under the curve $f(x)=-x^{3}+2 x^{2}$ on the interval $[-1,2]$ using 6 subintervals
If we make 4 subintervals, then each rectangle has width of $\frac{2-(-2)}{4}=1$. And we partition $[-2,2]$ into $\{-2,-1,0,1,2\}$
The area is

$$
\begin{aligned}
\sum_{k=1}^{4} f\left(x_{k}\right) \cdot 1 & =f(-1)+f(0)+f(1)+f(2) \\
& =3+4+3+0=10
\end{aligned}
$$

If we want the exact area, we need the limit as $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(-2+\frac{4 k}{n}\right) \cdot \frac{4}{n} \approx 10.66(6) \text { using } n=100
$$

Since $x_{k}=-2+k \cdot \Delta x=-2+k\left(\frac{4}{n}\right)$

If we make 6 subintervals, then each rectangle has width of $\frac{2-(-1)}{6}=\frac{1}{2}$. And we partition $[-1,2]$ into $\{-1,-0.5,0,0.5,1,1.5,2\}$
The area is

$$
\begin{aligned}
\sum_{k=1}^{6} f\left(x_{k}\right) \cdot \frac{1}{2} & =(f(-0.5)+f(0)+\cdots+f(2)) \cdot \frac{1}{2} \\
& =(0.625+0+3.75+1+1.125+0) \cdot \frac{1}{2} \\
& =1.5625
\end{aligned}
$$

If we want the exact area, we need the limit as $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(-1+\frac{6 k}{n}\right) \cdot \frac{6}{n} \approx 2.2(1) \text { using } n=100
$$

Since $x_{k}=-1+k \cdot \Delta x=-1+k\left(\frac{6}{n}\right)$
Note: In the regions that f is decreasing our rectangles are underestimating the area and vice versa in the regions f is increasing.

Practice Problems: 10.4 \# 1, $3 \& 4$ (write the area as a limit $n \rightarrow \infty$ and approximate using $n=4$, use the calculator to determine the area to 1 or 2 decimals of accuracy)

