Fundamental Theorem of Calculus: Part 2

Goal:

- Understands how to evaluate a definite integral for basic functions on $[a, b]$

Terminology:

- Total Area

Discussion: Why are the following properties true?

$$
\begin{gathered}
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x \\
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
\end{gathered}
$$

For the first one, we are adding two areas that are side by side together. The area from $[a, c]$ is the same if we split it into two sections $[a, b]$ and $[b, c]$.

For the second one, we ask what does it mean to move backwards? Well then our $\Delta x<0$ in the Riemann sum so this will change the sign of the area.

We want to evaluate the following integral where a, b could be anything on the domain of f.

$$
\int_{a}^{b} f(x) d x
$$

We are going to think of a, b as variables on both sides of some fixed point c. That is, let a, b be any numbers on the domain of f such that $a<c<b$

Then we can define a function (which is a very valuable trick to help make simplify a problem)

$$
F(b)=\int_{c}^{b} f(x) d x
$$

Where $F^{\prime}(b)=f(b)$ so F is an antiderivative of f. Likewise,

$$
\begin{aligned}
F(a) & =\int_{c}^{a} f(x) d x=-\int_{a}^{c} f(x) d x \\
& \Rightarrow-F(a)=\int_{a}^{c} f(x) d x
\end{aligned}
$$

We can stitch together these areas:

$$
\begin{aligned}
& \int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=-F(a)+F(b) \\
& \Rightarrow \int_{a}^{b} f(x) d x=F(b)-F(a)=\left.F(x)\right|_{a} ^{b}
\end{aligned}
$$

Example: Evaluate the following

$$
\int_{-1}^{2}\left(x^{2}-4 x+1\right) d x
$$

We need to find an antiderivative to the function $f(x)=x^{2}-4 x+1$. We see that such a function would be

$$
\begin{aligned}
& F(x)=\frac{x^{3}}{3}-2 x^{2}+x \\
& \Rightarrow \int_{-1}^{2}\left(x^{2}-4 x+1\right) d x=\frac{x^{3}}{3}-2 x^{2}+\left.x\right|_{-1} ^{2} \\
&=\frac{8}{3}-8+2-\left(-\frac{1}{3}-2-1\right) \\
&=3-6+3=0
\end{aligned}
$$

Practice: Evaluate the following

$$
\int_{0}^{1}\left(x^{99}+\frac{1}{\sqrt{3 x+1}}\right) d x
$$

We need to find an antiderivative to the function $f(x)=x^{99}+\frac{1}{\sqrt{3 x+1}}$. We see that such a function would be

$$
\begin{aligned}
F(x)=\frac{x^{100}}{100}+ & \frac{2}{3} \sqrt{3 x+1} \\
\Rightarrow \int_{0}^{1}\left(x^{99}+\frac{1}{\sqrt{3 x+1}}\right) d x & =\frac{x^{100}}{100}+\left.\frac{2}{3} \sqrt{3 x+1}\right|_{0} ^{1} \\
& =\frac{1}{100}+\frac{4}{3}-\left(0+\frac{2}{3}\right) \\
& =\frac{200}{300}+\frac{3}{300}=\frac{203}{300}
\end{aligned}
$$

Practice: Evaluate the following

$$
\int_{-4}^{-2} \frac{3-x}{x} d x
$$

We need to find an antiderivative to the function $f(x)=\frac{3-x}{x}=\frac{3}{x}-1$. We see that such a function would be

$$
\begin{gathered}
F(x)=3 \ln |x|-x \\
\Rightarrow \int_{-4}^{-2} \frac{3-x}{x} d x=3 \ln |x|-\left.x\right|_{-4} ^{-2} \\
\\
=3 \ln 2+2-(3 \ln 4+4) \\
\\
=3 \ln 0.5-2
\end{gathered}
$$

If we don't include the bounds we are shorthanding a way to write the general antiderivatvie of a function

$$
\int f(x) d x=\int_{0}^{x} f(t) d t=F(x)+C
$$

Example: Evaluate

$$
\int \frac{x+1}{x-1} d x
$$

We need to find an antiderivative to the function $f(x)=\frac{x+1}{x-1}$. It is NOT $\left(\frac{x^{2}}{2}+x\right) \ln |x-1|$ since that would require a product rule. Instead, we need to simplify using long division.

$$
\frac{x+1}{x-1}=1+\frac{2}{x-1}
$$

We can then see that an antiderivative would be

$$
F(x)=x+2 \ln |x-1|
$$

Check that $F^{\prime}(x)=1+\frac{2}{x-1}=\frac{x-1+2}{x-1}=\frac{x+1}{x-1}$

$$
\Rightarrow \int \frac{x+1}{x-1} d x=x+2 \ln |x-1|+C
$$

Practice: Evaluate

$$
\int \frac{2 x^{2}-x+3}{x+1} d x
$$

Using long division, we get that

$$
\frac{2 x^{2}-x+3}{x+1}=2 x-3+\frac{6}{x+1}
$$

We can then see that an antiderivative would be

$$
F(x)=x^{2}-3 x+6 \ln |x+1|
$$

Check that $F^{\prime}(x)=2 x-3+\frac{6}{x+1}=\frac{2 x^{2}+2 x-3 x-3+6}{x+1}=\frac{2 x^{2}-x+3}{x+1}$

$$
\Rightarrow \int \frac{2 x^{2}-x+3}{x+1} d x=x^{2}-3 x+6 \ln |x+1|+C
$$

Practice Problems: 10.1 \# 1 (NOT e, h, m, n, p)

