The Definite Integral

Goal:

- Can write the limit of a Riemann Sum as a definite integral
- Can evaluate definite integrals using signed area under the curve
- Can use calculator to evaluate definite integrals

Terminology:

- Integral

Reminder:

- Quiz Wednesday January $15^{\text {th }}$

Riemann Sums:

Consider the function f and we want to find the net area under the curve on $[a, b]$. In general what we can do is consider some partition of $[a, b]$. That is, divide the interval intosome sequence

$$
P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right\}
$$

where $x_{0}=a$ and $x_{n}=b$ and $x_{k}<x_{k+1}$.
With that our job is just to estimate the area under the curve on the subinterval [x_{k}, x_{k+1}]. If the partition is uniformaly small enough (that is the largest subinterval has small length) then any regtangle in the subintervals will be a good approximation to the area.

So pick some arbitrary point in the subinterval, $c_{k} \in\left[x_{k}, x_{k+1}\right]$ and use $f\left(c_{k}\right)$ to make the height of the rectangle which has width $\Delta x_{k}=x_{k+1}-x_{k}$, hence it has area of

The net area will be

This is a general Riemann Sum. Observe that RAM uses $\Delta x=\frac{b-a}{n}$ and $x_{k+1}=x_{k}+\Delta x$ for each k. The differences in LRAM, MRAM, and RRAM come from the choice of c_{k}.

For this sum to be the exact area under the curve we would need the largest length to go to zero, that is $\|P\| \rightarrow 0$

This is the definite integral. Just like the slope at a point was defined using limits, the area between curves also uses limits. This is calculus in its essence: How can we measure change at an instant? How can adding 0 infinitely often give us a real number?

Example: Evaluate the following

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \sqrt{16-c_{k}^{2}} \cdot \Delta x_{k}+\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left(\frac{c_{k}}{2}+1\right) \cdot \Delta x_{k}
$$

Where P is any arbitrary partition of $[-4,4]$

Check on calculator! Using
$\operatorname{fnInt}\left(y_{1}, x, a, b\right)$
OR on the graph you can plot the definite integral using "Calc" and entering the left and right bounds.

Example: Evaluate the following

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} c_{k}^{2} \cdot \sin \left(c_{k}\right) \cdot \Delta x_{k}
$$

Where P is some partition of $[-1,1]$

Practice Problems: 5.2 \# 1-6 (and change to a closed form Riemann sum), 29-40
Pick and choose out of the following sets: 7-12, 13-22, 23-28

Extra Riemann Sums
Look Ahead: 5.3 How can we define the average value of the function?

Extra Riemann Sums (Hard)

For each of the following, write it as a definite integral and then estimate using MRAM and Trapezoid method ($n=4$) and the exact using fnint. Recall that $\Delta x=(b-a) / n=\Delta x_{k}$ for all k in a regular partition.
1.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{3 k}{n}\right)^{2}+\left(\frac{3 k}{n}\right)-2\right) \cdot \frac{3}{n}
$$

2.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \ln \left(\frac{2 k}{n}+1\right) \cdot \frac{2}{n}
$$

3.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\sin ^{2}\left(\frac{\pi k}{n}\right)}{n}
$$

4.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{20 e^{-\left(\frac{10 k}{n}-5\right)^{2}}}{\sqrt{\pi} \cdot n}
$$

Solutions to integrands and intervals (Note the solutions are NOT unique!)

1. $f(x)=x^{2}+x-2$ on $[0,3]$
2. $f(x)=\ln x$ on $[1,3]$ OR $f(x)=\ln (x+1)$ on $[0,2]$
3. $f(x)=\sin ^{2}(\pi x)$ on $[0,1]$
4. $f(x)=\frac{e^{-\left(\frac{x}{2}\right)^{2}}}{\sqrt{\pi}}$ on $[-10,10]$ OR $f(x)=\frac{2 e^{-x^{2}}}{\sqrt{\pi}}$ on $[-5,5]$

In Class Evidence

Express the limit as an integral and use fnint to evaluate it:
1.

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} c_{k}^{2} \cdot \Delta x_{k}
$$

4.

$\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \frac{1}{1-c_{k}} \cdot \Delta x_{k}$
P is any partion of $[0,2]$

Using graphs and the fact that

$$
\int_{0}^{1} x^{3} d x=\frac{1}{4}
$$

Evaluate the following integrals.
33.

$$
\int_{0}^{1}\left(1-x^{3}\right) d x
$$

34.

$$
\int_{0}^{1}(|x|-1)^{3} d x
$$

35

$$
\int_{0}^{2}\left(\frac{x}{2}\right)^{3} d x
$$

