Fundamental Theorem of Calculus: Part 2

Goal:

- Understands how to evaluate a definite integral for basic functions on $[a, b]$
- Understands how to derive the second part of Fundamental Theorem

Terminology:

- Total Area

Reminder:

- Test on Tuesday Feb 4

Recall that last time we looked at:

So that $\frac{\Delta G(x)}{\Delta x}=g(c)$ and as $\Delta x \rightarrow 0$ we have that $c \rightarrow x$ so that

$$
\begin{gathered}
\lim _{\Delta x \rightarrow 0} \frac{\Delta G(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} g(c) \\
\Rightarrow \frac{d G}{d x}=g(x)
\end{gathered}
$$

And we saw G is the antiderivative of g since it is some function that if we diferentiate we get $\frac{d}{d x} G(x)=g(x)$

So the question remains, how do we evaluate a discrete integral with antiderivates?

$$
\int_{a}^{b} g(t) d t=? ? ?
$$

Example: Evaluate the following

$$
\int_{0}^{4}\left(t^{2}-4 t+1\right) d t
$$

Practice: Evaluate the following (n is a constant)

$$
\int_{0}^{1}\left(x^{n}+\sqrt{x}\right) d x
$$

Example: Find the total area between the x-axis and the curve $x^{2}-2 x$ on the interval $[0,3]$

Practice: Find the total are between the x-axis and the curve $x^{3}-4 x^{2}+3 x$ on the interval $[0,3]$

Practice Problems: 5.3 \# 17-20
5.4 \# 1-13,15-18, 25-28, 51
\# 14

In Class Evidence

Evaluate the following
1.

$$
\int_{0.5}^{2}\left(2-\frac{1}{x}\right) d x
$$

2.

$$
\int_{2}^{-1} 3^{x} d x
$$

3.

$$
\int_{0}^{\frac{\pi}{3}} 4 \sec x \tan x d x
$$

17. Find the total area of the region between the curve $y=x^{3}-3 x^{2}+2 x$ and the x-axis on the interval [0,2].
18. Find the area between the line $y=0.5$ and the curve $y=\sin x$ on the interval $\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]$
