Inverses

KNOW	DO	UNDERSTAND		
Be able identify when a				
function was inverted.				
Be able to recognize an				
inverse given the graphs			\quad	Use Desmos and Geogebra to graph
:---				
inverses.				
Graph an inversion accurately by hand.				
Algebraically solve for an inverse.				
Algebraically confirm two functions are				
inverses.	\quad	Inverses:		
:---				
Can justify how the inverse will be				
transformed and what it's				
characteristics will be.				

If we are given the function $f: X \rightarrow Y$, it is extremely natural to consider the relation $F: Y \rightarrow X$

Definition: A given function $f: x \mapsto y$ is one-to-one (1-to-1) if we have that for every $y_{0} \in Y$ there is only one $x_{0} \in X$ such that $f\left(x_{0}\right)=y_{0}$.

Definition: Given a 1-to-1 function f, we say that f^{-1} is an inverse of f if we have that

Example: Consider $f(x)=\frac{1}{x-3}$ and $f^{-1}(x)=\frac{1}{x}+3$

Graphically, we can view the inverse in relation to the original graph by looking at the transformation from $f: x \mapsto y$ to $f^{-1}: y \mapsto x$. Or in other words from

$$
I:(x, y) \mapsto(y, x)
$$

Example: Graph the inverse relation from the graph of f below

So the final question is how do find the inverse function algebraically? Well, we want to look at what happens if y is the input and x is the output.

Example: For the above function $f(x)=2 x-3$ we want to solve for x.

Example: If g is 1-to-1 then find the inverse of $f(x)=\frac{1}{4 g(x+3)}+2$

Practice: Find the equation of the inverse of the following functions (assume g is 1-to-1)

$$
f(x)=\frac{x-1}{3}
$$

$$
f(x)=\frac{1}{4} x^{3}+3
$$

$$
f(x)=g\left(\frac{3}{2 x-4}\right)+1
$$

$$
f(x)=\frac{g(0.5 x)-1}{2}
$$

$$
f(x)=g\left(3+g^{-1}\left(\frac{2}{3 x}\right)\right)-2
$$

$$
f(x)=5-(4-2 x)^{2}
$$

$f(x)=3 g\left(\frac{x}{5}-1\right), \quad g$ is even

$$
f(x)=h(x) \cdot g(x)
$$

