Inverses

KNOW	DO	UNDERSTAND
Be able identify when a	Use Desmos and Geogebra to graph	Inverses:
function was inverted.	inverses.	Can justify how the inverse will be
Be able to recognize an	Graph an inversion accurately by hand.	transformed and what it's
inverse given the graphs	Algebraically solve for an inverse.	characteristics will be.
	Algebraically confirm two functions are	
	inverses.	
Vocab & Notation		
One-to-one: 1-to-1		
• Inverse: f^{-1}		

If we are given the function $f: X \to Y$, it is *extremely* natural to consider the relation $F: Y \to X$

Definition: A given function $f: x \mapsto y$ is **one-to-one** (1-to-1) if we have that for every $y_0 \in Y$ there is only one $x_0 \in X$ such that $f(x_0) = y_0$.

Unit 1: Functions

Graphically, we can view the inverse in relation to the original graph by looking at the transformation from $f: x \mapsto y$ to $f^{-1}: y \mapsto x$. Or in other words from

LX,y) (y,x) inverse swops LX,y) (y,x) x and y Swaps horizonted and vortical

Example: Graph the inverse relation from the graph of f below

So the final question is how do find the inverse function algebraically? Well, we want to look at what happens if y is the input and x is the output.

Example: For the above function f(x) = 2x - 3 we want to solve for x.

Unit 1: Functions

Example: If g is 1-to-1 then find the inverse of $f(x) = \frac{1}{4g(x+3)} + 2$

Practice: Find the equation of the inverse of the following functions (assume g is 1-to-1)

$$f(x) = \frac{x-1}{3} \qquad \qquad f(x) = \frac{1}{4}x^3 + 3$$

$$f(x) = g\left(\frac{3}{2x-4}\right) + 1 \qquad \qquad f(x) = \frac{g(0.5x) - 1}{2}$$

Unit 1: Functions

$$f(x) = g\left(3 + g^{-1}\left(\frac{2}{3x}\right)\right) - 2$$

$$f(x) = 5 - (4 - 2x)^2$$

Inverses: May 6

$$f(x) = 3g\left(\frac{x}{5} - 1\right)$$
, g is even

 $f(x) = h(x) \cdot g(x)$

Practice Problems: 1.4 page 28 – 31 # 1-10, 12-15, 19-21, C1, C2 **Building Understanding 2**