Inverses

KNOW

Be able identify when a function was inverted. Be able to recognize an inverse given the graphs

DO

Use Desmos and Geogebra to graph inverses.

Graph an inversion accurately by hand. Algebraically solve for an inverse. Algebraically confirm two functions are inverses.

UNDERSTAND

Inverses:

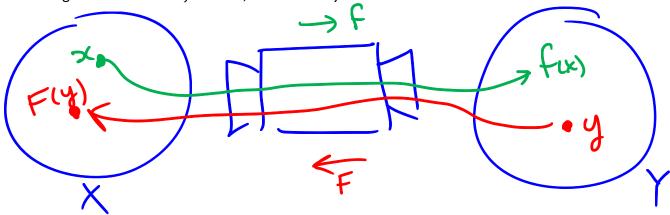
Can justify how the inverse will be transformed and what it's characteristics will be.

Vocab & Notation

• One-to-one: 1-to-1

• Inverse: f^{-1}

If we are given the function $f: X \to Y$, it is *extremely* natural to consider the relation $F: Y \to X$



Definition: A given function $f: x \mapsto y$ is **one-to-one** (1-to-1) if we have that for every $y_0 \in Y$ there is only one $x_0 \in X$ such that $f(x_0) = y_0$.

Definition: Given a 1-to-1 function f, we say that f^{-1} is an **inverse** of f if we have that

Example: Consider
$$f(x) = \frac{1}{x-3}$$
 and $f^{-1}(x) = \frac{1}{x} + 3$

$$f(f^{-1}(x)) = f(\frac{1}{x} + 3) = \frac{1}{x+3+3} = x$$

$$f(f^{-1}(x)) = f(\frac{1}{x} + 3) = \frac{1}{x+3+3} = x$$

$$f^{-1}(f(x)) = f^{-1}(\frac{1}{x-3}) = \frac{1}{x-3} + x = x$$

Unit 1: Functions Inverses: May 6

Graphically, we can view the inverse in relation to the original graph by looking at the transformation from f and f and f are f are f and f are f are f and f are f are f and f are f are f are f and f are f are f are f and f are f and f are f are

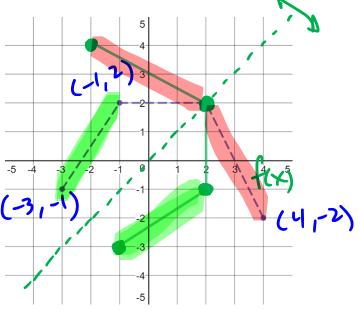
 $f: x \mapsto y$ to $f^{-1}: y \mapsto x$. Or in other words from

(x,y) (y,x)

$$I:(x,y)\mapsto (y,x)$$

swaf x and of swap horizontan and

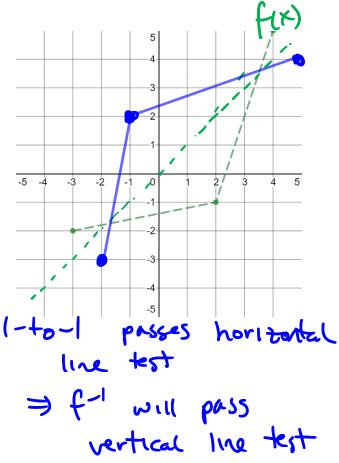
Example: Graph the inverse relation from the graph of f below



I: (-3,-1) +> (-1,-3)

Not 1-to-1 fals horitaline test f(-x) = f(x)

A even functions not 1-to-1



So the final question is how do find the inverse function algebraically? Well, we want to look at what happens if y is the input and x is the output.

Example: For the above function f(x) = 2x - 3 we want to solve for x.

1) x by 2 / f

$$f^{-1}(x) = \frac{x+3}{2}$$

$$\Rightarrow f^{-1}(x) = \frac{x+3}{2}$$

$$\sqrt{\frac{3+3}{2}} = X$$
) shape of fil

Unit 1: Functions Inverses: May 6

Example: If g is 1-to-1 then find the inverse of $f(x) = \frac{1}{4g(x+3)} + 2$

$$y = \frac{1}{4g(x+3)} + 2$$

$$y - 2 = \frac{1}{4g(x+3)}$$

$$y - 2 = \frac{1}{4g(x+3)}$$

$$y - 2 = \frac{1}{4g(x+3)}$$

$$y - 3 = 4$$

$$y - 4 = 4$$

$$y - 2 = 4$$

$$y - 4 = 4$$

$$y - 2 = 4$$

$$y - 3 = 4$$

$$y - 4 = 4$$

$$y -$$

Practice: Find the equation of the inverse of the following functions (assume g is 1-to-1)

$$f(x) = \frac{x-1}{3}$$

$$f(x) = \frac{1}{4}x^3 + 3$$

$$3y + 1 = x$$

$$3(y + 1) = x$$

$$f(x) = g\left(\frac{3}{2x-4}\right) + 1$$

$$y = g\left(\frac{3}{2x-4}\right) + 1$$

$$y = \frac{1}{2} \left[g\left(\frac{x}{2}\right) - 1\right]$$

$$f'(y-1) = g'(y) \left(\frac{3}{2x-4}\right)$$

$$f''(y-1) = \frac{3}{2x-4}$$

$$f''(y-1) = \frac{3}{2x-4}$$

$$f''(y-1) = \frac{3}{2x-4}$$

$$f''(y-1) = \frac{3}{2x-4}$$

$$f''(y-1) = x$$

$$f''(y-1) = x$$

$$f''(y-1) = x$$

$$f''(y) = x$$

Inverses: May 6 $f(x) = 5 - (4 - 2x)^2$

 $f(x) = g\left(3 + g^{-1}\left(\frac{2}{3x}\right)\right) - 2$ $Y = g\left(3 + g^{-1}\left(\frac{2}{3x}\right)\right) - 2$ $g'(y+2) = \overline{g'g}\left(3 + g^{-1}\left(\frac{2}{3x}\right)\right)$ $g\left(g^{-1}(y+2) - 3\right) = g\overline{g'}\left(\frac{2}{3x}\right)$ $\frac{2}{2}g\left(\overline{g'}(y+2) - 3\right) = \frac{1}{x}$ $f'(x) = 3g\left(\frac{x}{5} - 1\right), \quad g \text{ is even}$

Will complete

 $f(x) = h(x) \cdot g(x)$