Lesson 13 – Slope and Linear Equations

Goal:

- Can describe the slope of a line given as a graph, set of ordered pairs, or equation
- Can use multiple definitions of slope
- Can build the equation of a line in slope-intercept form

New Terminology:

- Slope
- Intercept
- Slope-Intercept Form

Discuss: Consider the arithmetic sequence with a common difference of 1.5 and the 3^{rd} term is 1. Determine the first 5 terms of the sequence and plot them on the grid.

Plot a second sequence that still has a 3rd term of 1, but the common difference is -0.5

Chapter 7 Linear Functions

Remember with our formula for arithmetic sequences we had two major parts to the equation:

 $a_n = a_0 + n \cdot d$

In function notation we could write this as:

Which shows that n is the

and a(n) is the

While a_0 and d are special constants.

The common difference, *d*, is now called **SLOPE** and defined as:

The zeroth term, a_0 , is now called the **Y-INTERCEPT** and defined as:

Practice: Determine the common difference of an arithmetic sequence if $a_4 = 8$ and $a_{10} = 6$.

Discuss: Determine the slope of a line that passes through the points (3,4) and (12,20). [How is this like finding the common difference of an arithmetic sequence?]

Practice: Determine the slope of a line that passes through the points (-3,2) and (5,-8).

Discuss: Determine the slope of the line that passes through the points (3,9) and (-17,9). AND determine the slope of the line that passes through the points (-2, -4) and (-2, 5).

Once we are comfortable with the slope of a line, we can describe the *y*-intercept and then graph the line.

Practice: Graph the line with a slope of $\frac{1}{2}$ and *y*-intercept of -1.

Practice: Graph the line with a slope of $-\frac{2}{3}$ and *y*-intercept of 2.

					6						
					-5-	 					
			_		-4-						
					3-						
				_	-2-				_		
					1-						
-6 -5	-4	-3	-2	-1	0	1	2	3	4	5	6
-6 -5	-4	-3	-2	-1	0 1-	1	2	3	4	5	6
-6 -5	-4	-3	-2	-1	0 1- 2-	1	2	3	4	5	6
-6 -5	-4	-3	-2	-1	0 1- 2- 3-	1	2	3	4	5	6
-6 -5	-4	-3	-2	-1	0 1- 2- 3- 4-	1	2	3	4	5	6
-6 -5	-4	-3	-2	-1	0 1- 2- 3- 4- 5-		2	3	4	5	6

Chapter 7 Linear Functions

Lesson 13

All that's left is to put it together in an equation form. But we already have a beautiful equation from our arithmetic sequence.

$$a(n) = d \cdot n + a_0$$

The standard convention is for the slope to be:

And the *y*-intercept to be:

So, our linear equation in **SLOPE-INTERCEPT FORM** is:

f(x) =

Let's go back and determine the equations to the lines described!

Using the slope-intercept form, we can quickly graph any line.

Example: Graph the line 3x + 4y = 6

Practice: On the same grid, graph and label the line 5x - 2y + 15 = 0

Chapter 7 Linear Functions

Lesson 13

Finally, we want to be able to make the equation to lines given their characteristics. We use the basic idea that every linear function will have the form:

f(x) = mx + b

And that the y-intercept is the point (0, b).

Example: Find the equation to the line that has a slope of $\frac{1}{3}$ and passes through the point (4, 6)

Practice: Find the equation to the line that has a *y*-intercept of -3 and passes through the point (2, 5).

Discuss: Determine the equation of the line that passes through (6, 5) and (-3, 8).

Assigned Problems: 6.5 page 325 – 328 # 1-5, 10, 18
12, 14, 16
7.1 page 349 – 356 # 1-3, 5-10, 12, 13, 19-21, 24
15, 18, 23 (ghost pepper)
Key Ideas on page 324 and 349