Lesson 13 - Slope and Linear Equations

Goal:

- Can describe the slope of a line given as a graph, set of ordered pairs, or equation
- Can use multiple definitions of slope
- Can build the equation of a line in slope-intercept form

New Terminology:

- Slope
- Intercept
- Slope-Intercept Form

Discuss: Consider the arithmetic sequence with a common difference of 1.5 and the $3^{\text {rd }}$ term is 1 . Determine the first 5 terms of the sequence and plot them on the grid.

Plot a second sequence that still has a $3^{\text {rd }}$ term of 1 , but the common difference is -0.5

Remember with our formula for arithmetic sequences we had two major parts to the equation:

$$
a_{n}=a_{0}+n \cdot d
$$

In function notation we could write this as:

Which shows that n is the
and $a(n)$ is the
While a_{0} and d are special constants.
The common difference, d, is now called SLOPE and defined as:

The zeroth term, a_{0}, is now called the \mathbf{Y}-INTERCEPT and defined as:

Practice: Determine the common difference of an arithmetic sequence if $a_{4}=8$ and $a_{10}=6$.

Discuss: Determine the slope of a line that passes through the points $(3,4)$ and $(12,20)$. [How is this like finding the common difference of an arithmetic sequence?]

Practice: Determine the slope of a line that passes through the points $(-3,2)$ and $(5,-8)$.

Discuss: Determine the slope of the line that passes through the points $(3,9)$ and $(-17,9)$. AND determine the slope of the line that passes through the points $(-2,-4)$ and $(-2,5)$.

Once we are comfortable with the slope of a line, we can describe the y-intercept and then graph the line.
Practice: Graph the line with a slope of $\frac{1}{2}$ and y-intercept of -1 .

Practice: Graph the line with a slope of $-\frac{2}{3}$ and y-intercept of 2 .

All that's left is to put it together in an equation form. But we already have a beautiful equation from our arithmetic sequence.

$$
a(n)=d \cdot n+a_{0}
$$

The standard convention is for the slope to be:
And the y-intercept to be:
So, our linear equation in SLOPE-INTERCEPT FORM is:

$$
f(x)=
$$

Let's go back and determine the equations to the lines described!
Using the slope-intercept form, we can quickly graph any line.

Example: Graph the line $3 x+4 y=6$

Practice: On the same grid, graph and label the line $5 x-2 y+15=0$

Finally, we want to be able to make the equation to lines given their characteristics. We use the basic idea that every linear function will have the form:

$$
f(x)=m x+b
$$

And that the y-intercept is the point $(0, b)$.
Example: Find the equation to the line that has a slope of $\frac{1}{3}$ and passes through the point $(4,6)$

Practice: Find the equation to the line that has a y-intercept of -3 and passes through the point $(2,5)$.

Discuss: Determine the equation of the line that passes through $(6,5)$ and $(-3,8)$.

Assigned Problems: 6.5 page 325 - 328 \# 1-5, 10, 18
$12,14,16$
7.1 page 349 - 356 \# 1-3, 5-10, 12, 13, 19-21, 24
$15,18,23$ (ghost pepper)
Key Ideas on page 324 and 349

