Lesson 15 - Point-Slope Form

Goal:

- Can graph equations in point-slope form
- Can build an equation for a linear function in point-slope form
- Can use point-slope form to model applications

New Terminology:

- Point-slope form

Discuss: Graph the lines

$$
\begin{gathered}
y-3=-4(x+2) \\
y-3=\frac{1}{2}(x+2)
\end{gathered}
$$

What relationship do you notice about the equations and the graphs?

The form these equations are written in is called POINT-SLOPE FORM, although this should really be called slope form as it is the definition of the slope.

Example: Graph the following equation by identifying the point and slope.

$$
y+4=-\frac{3}{2}(x-3)
$$

Practice: Graph the following equation above and label the line.

$$
y+2=\frac{5}{3}(x+4)
$$

Example: Determine the equation in point-slope form of the line that passes through the point $(-3,-7)$ and has slope $-\frac{1}{2}$.

Practice: Determine the equation in point-slope form of the line that passes through the points $(8,-3)$ and $(-5,10)$.

Practice: Determine the equation in point-slope form of the line that has an x-intercept of 9 and y-intercept of -4 .

To determine the equation of a line we need 2 pieces of information:

1. 1 Point and Slope \Rightarrow
2. 2 Points \Rightarrow

We've looked at 3 ways to model linear equations. Each has advantages and disadvantages to be used. Discuss the pros and cons of each.

Form	Advantages	Disadvantages
Slope-Intercept		
$y=m x+b$		
General		
$A x+B x+C=0$		
$A \geq 0$		
Point-Slope		
$y-y_{0}=m\left(x-x_{0}\right)$		

Assigned Problems: 7.3 page 377 - 369 \# 1-9, 11, 12, 14-17, 19, 22
18,21
Key Ideas on page 376

