Lesson 2 - Solving Angles of Triangles

Goal:

- Given a right-angle triangle with 2 sides, you can determine the measure of the two acute angles. (Can be applied to contextualized problems)
- Understands that trig operators have a reverse operator (just like add/subtract) that will transform a ratio of sides to an angle between 0° and 90°.
New Terminology:
- Inverse

Review: Determine the two missing side lengths of each triangle. Use cosine, sine, and tangent all at least once.

Review: In your own words what does $\tan \psi=3.2$ mean?

Remember that yesterday we looked at how we can relate the angle and the ratios (proportions) of sides to each other using our trig operators.

Practice: Use the "tangent" operator on the following numbers $0,20,45,70$ and illustrate the connection

0°	20°	45°

We can easily find the ratio of a given angle, but what if we want to go backward and determine the angle of a given ratio?

Answer:

Example: What does the following represent?

Practice: What does the following represent?

Example: Solve for the acute angles in the following triangle

Practice: Solve for the acute angles in the following triangle

Example: A tree stands 63 m tall and you are standing 20 m from the base of the tree. If your eyes are 1.5 m above the ground what is the angle of inclination when you look up to the top?

Practice: Two buildings are separated by 85 m . The shorter building is 185 m tall and the taller building is 250 m tall. What is the angle of declination from the tall building to the short building?

Discuss: Determine the angle between the line through $(0,0)$ and $(5,3)$ and the x-axis?

Discuss: Determine the angle between the line through $(1,0)$ and $(4,5)$ and the x-axis?

Discuss: Determine the angle between the line through $(2,3)$ and $(5,1)$ and the x-axis?

SUMMARY: We know that a right-angle triangle will have 3 distinct sides and 2 acute angles. The minimal amount of information we need is TWO THINGS!

- 2 sides \Rightarrow
- 1 side and 1 angle \Rightarrow
- 2 angles \Rightarrow

Assigned Problems: 3.1 page 107 - 112: \#4, 5, 6b, 7a, 8, 11, 13a, 19

3.2 page $120-123$: \# 3, 5, 6ac, 12, 13

15:
Key Ideas on page 107 and 119

